Комплексные Соединения (792032), страница 5
Текст из файла (страница 5)
Пример 2. Составьте уравнение реакции, протекающей при добавлении раствора азотистой кислоты к подкисленному раствору перманганата калия.
1 – 2.
3 – 5. Азотистая кислота – кислота слабая, поэтому в растворе она присутствует в основном в виде молекул. Она легко окисляется при добавлении сильных окислителей. При этом степень окисления азота повышается до ближайшей устойчивой, то есть до +V (устойчивый в газовой фазе диоксид азота в воде диспропорционирует). Единственная частица, содержащая атом азота(V) и устойчивая в водном растворе – нитрат-ион.
2 | MnO4 |
5 | HNO2 + 4H2O – 2e– = NO3 |
6. Ионное уравнение
2MnO4 + H3O
+ 5HNO2 = 2Mn2
+ 4H2O + 5NO3
7. При переходе от ионного уравнения к молекулярному первое приходится удваивать, так как одна молекула серной кислоты образует два иона оксония.
4KMnO4p + H2SO4p + 10HNO2p = MnSO4p + 3Mn(NO3)2p + 6H2O + 4KNO3p
Это уравнение можно записать и по-другому:
4KMnO4p + H2SO4p + 10HNO2p = 4Mn(NO3)2p + 6H2O + 2KNO3p + K2SO4p
Оба уравнения правильные, так как отражают процесс, протекающий в растворе. При удалении воды кристаллизоваться будут все четыре соли [MnSO4, Mn(NO3)2, K2SO4, KNO3] причем в соотношении, определяемом их растворимостью, а не коэффициентами в каком-либо из уравнений.
Пример 3. Составьте уравнение реакции, протекающей при сливании раствора перманганата калия с раствором аммиака.
1 – 2.
3 – 5. Аммиак – слабое основание, поэтому среда в его водном растворе слабощелочная, и перманганат-ион в этих условиях при восстановлении превращается в диоксид марганца, выпадающий из раствора в виде бурого осадка. В нейтральной и щелочной среде очень мало ионов оксония, поэтому для связывания " лишних" атомов кислорода(–II) могут быть использованы лишь молекулы воды. Каждая молекула воды, присоединяя один атом кислорода(–II), превращается в два гидроксид-иона. Аммиак в этих условиях окисляется до азота (ближайшая устойчивая степень окисления – ноль).
2 | 6 | MnO4 |
1 | 3 | 2NH3 + 6H2O – 6e– = N2 + 6H3O |
6. 2MnO4 + 10H2O + 2NH3 = 2MnO2 + 8OH
+ N2
+ 6H3O
Так как в одной из полуреакций образуются гидроксид-ионы, а в другой – " ионы водорода" , что вполне допустимо в нейтральной (или близкой к ней) среде, перед приведением подобных членов в ионном уравнении необходимо учесть, что эти ионы одновременно в водном растворе существовать не могут (пройдет реакция нейтрализации).
2MnO4 + 4H2O + 2NH3 = 2MnO2 + 2OH
+ N2 + 6H2O
После приведения подобных членов получаем ионное уравнение:
2MnO4 + 2NH3 = 2MnO2 + 2OH
+ N2
+ 2H2O
7. 2KMnO4 + 2NH3 = 2MnO2 + 2KOH + N2 + 2H2O
Пример 4. Составить уравнение реакции, протекающей при сливании раствора перманганата калия с раствором сульфита калия в присутствии гидроксида калия.
2 | MnO4 |
1 | SO32 |
2MnO4 + SO32
+ 2OH
= 2MnO42
+ SO42
+ H2O
2KMnO4 + K2SO3 + 2KOH = 2K2MnO4 + K2SO4 + H2O
Источником " недостающего" атома кислорода(–II) в щелочной среде могут быть только два гидроксидных иона, при попытке использовать молекулу воды или один гидроксидный ион образуются свободные ионы оксония, что в щелочной среде невозможно.
Диоксид марганца MnO2 в кислотной среде, как вы уже знаете, также проявляет свойства сильного окислителя, например, окисляет не только хлорид-ион до хлора, но и нитрит-ион до нитрат-иона, йодид-ион до йода и т. д. В свою очередь сам диоксид марганца получается при взаимодействии перманганата калия с растворами солей марганца(II) по реакции конмутации
2MnO4 + 3Mn2
+ 6H2O = 5MnO2 + 4H3O
А устойчивый только в сильно щелочных растворах манганат калия K2MnO4 уже при незначительном подкислении и даже при разбавлении раствора водой диспропорционирует:
3MnO42 + 2H2O = 2MnO4
+ MnO2 + 4OH
Очень сильным окислителем является оксид марганца(VII). Это кислотный оксид (при обычных условиях жидкость), активно реагирующий с водой
Mn2O7 + H2O = 2HMnO4
и поглощающий ее из воздуха. Он легко окисляет аммиак (до N2), сероводород (до SO2), сульфиды (до сульфатов), монооксид углерода и органические вещества (до CO2), сам при этом восстанавливаясь до MnO2.
[предыдущий раздел] | [содержание] | [следующий раздел] |
18.3. ОВР соединений хрома
Как и марганец, хром также образует, соединения, в которых проявляет самые разнообразные степени окисления. Соединения хрома в низших степенях окисления являются восстановителями, а в высших – окислителями. Более или менее устойчивыми являются степени окисления О, +II, +III, и +VI (из них самая устойчивая +III). Как и для марганца, условия протекания окислительно-восстановительных превращений соединений хрома можно изобразить в виде схемы (см рис. 3).
В отличие от перманганат-иона, устойчивого как в кислотной, так и в щелочной среде, хромат-ион устойчив только в щелочной и, отчасти, в нейтральной среде. В кислотной среде хромат-ион превращается в дихромат-ион по реакции
2CrO42 + 2H3O
= Cr2O72
+ 3H2O
Дихромат-ион, в свою очередь, устойчив только в кислотной и, отчасти, в нейтральной среде, а в щелочной превращается в хромат-ион:
Cr2O72 + 2OH
= 2CrO42
+ H2O
Поэтому в кислотной среде протекают окислительно-восстановительные процессы только с участием иона Cr2O72 , а в щелочной – только с участием иона CrO42
. Так как в кислотной среде окислительные свойства кислотных остатков оксокислот всегда проявляются сильнее, чем в щелочной, дихромат-ион значительно более сильный окислитель, чем хромат-ион. И наоборот, гексагидроксохромат(III)-ионы, существующие только в щелочной среде, легко окисляются до хроматов(VI) такими сильными окислителями, как хлор, бром или пероксид водорода.
Как и металлический марганец, хром проявляет восстановительные свойства, легко окисляясь ионами оксония (без доступа кислорода – до Cr2 , на воздухе – до Cr3
). Ион Cr2
, в отличие от Mn2
, – очень сильный восстановитель; он легко окисляется кислородом воздуха, восстанавливает ионы Fe3
до Fe2
, а также вступает и в другие ОВР.
Кристаллический триоксид хрома – очень сильный окислитель. Как и оксид марганца(VII), это кислотный оксид, легко реагирующий с водой с образованием хромовой кислоты H2CrO4. Следовательно, в ОВР он может вступать только в твердом виде. В частности, органические вещества при соприкосновении с CrO3 окисляются до углекислого газа, сероводород – до SO2, аммиак – до азота.
Составление уравнений ОВР с участием растворов соединений хрома полностью аналогично составлению уравнений реакций в случае соединений марганца, поэтому здесь приводятся лишь уравнения полуреакций ионов, содержащих хром:
Cr2O72 + 14H3O
+ 6e– = 2Cr3
+ 21H2O
CrO42 + 4H2O + 3e– = [Cr(OH)6]3
+ 2OH
[Cr(OH)6]3 + 2OH
– 3e– = CrO42
+ 4H2O
Cr2 – e– = Cr3
[предыдущий раздел] | [содержание] | [следующий раздел] |
18.4. ОВР азотной и серной кислот
Азотная кислота и ее растворы – сильные окислители. Концентрированные растворы азотной кислоты окисляют большинство металлов (кроме золота, платины, тантала и некоторых других), многие неметаллы (бор, графит, серу, фосфор и др.) и многие сложные вещества (сероводород, сульфиды, низшие оксиды меди и железа, многие органические вещества и др.) С железом, алюминием, хромом и некоторыми другими металлами концентрированная азотная кислота реагирует с образованием плотных кислородсодержащих покрытий, препятствующих дальнейшему окислению металла; это явление называется " пассивацией" металла.
С уменьшением концентрации азотной кислоты (с разбавлением) ее окислительная активность уменьшается, что отчасти связано с уменьшением числа молекул HNO3 и увеличением числа ионов NO3 . Почти полностью окислительные свойства исчезают в растворах нитратов. С разбавлением азотной кислоты сужается круг восстановителей, с которыми она может реагировать, но увеличиваются скорости многих реакций.