Халькогены (791993), страница 7
Текст из файла (страница 7)
Сера (IV) в сульфит-ионе может переходить в более высокую и более низкую степени окисления, то есть выступает в качестве восстановителя и окислителя, соответственно. Значения стандартных электродных потенциалов для реакций Э(IV) приведены в табл.8. При нагревании твердые сульфиты щелочных металлов диспропорционируют (при нагревании в вакууме твердые сульфиты Ca, Sr, Ba разлагаются до соответствующих оксидов. MSO3 = MO + SO2, а на воздухе - окисляются до сульфатов)
4Na2SO3 3Na2SO4 + Na2S.
В отличие от селенитов и теллуритов сернистая кислота и ее соли обладают выраженными восстановительными свойствами. Сульфиты в водных растворах медленно окисляются кислородом воздуха: 2SO32- + О2 SO42- (аналогичная реакция, катализируемая оксидом азота NO, в атмосфере служит источником кислотных дождей).
Сернистая кислота действует как мягкий восстановитель в многочисленных реакциях с солями металлов:
Fe2(SO4)3 + SO2 + 2H2O 2FeSO4 + 2H2SO4
У селенистой и теллуристой кислот восстановительные свойства выражены слабее (табл.8), то есть окислить их до производных Se(VI) и Te(VI) значительно труднее.
Отметим, что механизм окислительно-восстановительных реакций может включать прямой перенос атомов кислорода от окислителя к восстановителю. Например, при изучении в щелочной среде кинетики окисления сульфит-иона SO32- перманганат-ионом с помощью стабильного изотопа 18О было установлено, что содержание 18О в образующемся сульфат-ионе
SO32- + 18ОMnO32- O3S18O2- + Mn O32-
такое же, как в исходном перманганат-ионе. Это означает, что происходит прямой перенос атома кислорода от MnO4- к SO32- , сопровождающийся одновременным переходом двух электронов.
При взаимодействии с более сильными восстановителями соединения S(IV) проявляют окислительные свойства, например, SO2 + 2H2S 3S + 2H2O или SO2+ 3Zn + 6H+ H2S
+ 3Zn2+ + 2H2O .
Рис.7. Диаграмма окислительных состояний соединений халькогенов (рН=0).
Из рис.7 и табл.8 видно, что окислительные свойства H2TeO3 выражены сильнее, чем у сернистой кислоты. Соединения Se(IV) проявляют более сильные окислительные свойства, чем соединения S(IV) и Te(IV). Например, водный раствор SO2 восстанавливает селенистую кислоту: H2SeO3 + 2 SO2 + H2O Se
+ 2H2SO4 . Аналогично протекает реакция с H2TeO3 .
Как следует из диаграммы окислительных состояний (рис.7), термодинамическая стабильность оксокислот H2ЭO3 по отношению к диспропорционированию на Эо и ЭО2-4 увеличивается в ряду H2TeO3>H2SeO3>>H2SO3. Действительно, вольт-эквивалент (nEo) сернистой кислоты лежит выше, а селенистой и теллуристой кислот - ниже линии, соединяющей вольт-эквиваленты частиц Эо и ЭО2-4. Так как , где
Go - энергия Гиббса превращения ЭО2-3 в Эо и ЭО42- , n - количество электронов, участвующих в этом процессе, F - число Фарадея, Ео - стандартный потенциал, то указанное взаимное положение вольт-эквивалентов означает, что равновесие
3Н2ЭО3 = Э + ЭО2-4 + Н2О + 4Н+ в случае Э = S смещено вправо, а при Э = Sе и Те - влево.
§ 12. Оксокислоты халькогенов Э(VI): получение, строение, свойства.
Оксокислоты халькогенов (VI) H2SO4, H2SeO4 и H6TeO6 синтезируют окислением их диоксидов (или соответствующих им кислот):
H2SeO3 + Н2О2 H2SeO4 + Н2О
5TeO2 + 2KMnO4 + 6HNO3 + 12 Н2О 5H6TeO6 + 2KNO3 + 2Mn(NO3)2 ,
а также окислением простых веществ сильными окислителями:
5Te + 6HClO3 + 12H2O 5H6TeO6 + 3Cl2 ,
или обменными реакциями:
BaTeO4 + H2SO4 + 2H2O H6TeO6 + BaSO4.
В молекуле H2SO4 сера тетраэдрически окружена двумя гидроксильными (ОН) группами и двумя атомами кислорода. Длины связей (расстояние S- ОН равно 1.54 , а расстояние S- О равно 1.43
) в молекуле H2SO4 таковы, что связи S- О можно считать двойными, а связи S- ОН - одинарными. Бесцветные, похожие на лед кристаллы H2SO4 имеют слоистую структуру, в которой каждая молекула H2SO4 соединена с четырьмя соседними молекулами прочными водородными связями, образуя единый пространственный каркас. При температуре 10.48оС H2SO4 плавится с образованием тяжелой (d = 1.838 г/мл при 15оС) маслянистой жидкости, кипящей при 280оС. У жидкой H2SO4 структура почти такая же, как у твердой, только целостность пространственного каркаса нарушена, и его можно представить как совокупность микрокристалликов, постоянно меняющих свою форму. H2SO4 смешивается с водой в любых соотношениях, что сопровождается образованием гидратов H2SO4. n H2O (рис.8). Теплота гидратации настолько велика, что смесь может даже закипеть.
Рис.8. Т-х диаграмма системы H2O-H2SO4.
Жидкая H2SO4 удивительно похожа на воду со всеми структурными особенностями и аномалиями. Здесь та же система сильных водородных связей, что и в воде, почти такой же прочный пространственный каркас, такие же аномально высокие вязкость, поверхностное натяжение, температуры плавления и кипения. Диэлектрическая проницаемость H2SO4 велика (
100). По этой причине собственная диссоциация (автоионизация) у серной кислоты заметно больше, чем у воды: 2H2SO4
H3SO4+ + HSO4- , К = 2.7 . 10-4 .
Из-за высокой полярности связь Н- О легко разрывается, причем отщепление протона требует меньших энергетических затрат, чем у воды. По этой причине кислотные свойства у H2SO4 выражены сильно и при растворении в безводной H2SO4 большинство соединений, традиционно считавшихся кислотами (CH3COOH, HNO3, H3PO4 и др.), ведут себя как основания, вступая в реакции нейтрализации и повышая концентрацию анионов :
H2O + H2SO4 H3O+ +
,
основание
CH3COOH + H2SO4 CH3C(OH)2+ +
,
основание
HNO3 + 2 H2SO4 NO2+ + H3O+ +2
,
основание
Лишь несколько соединений (HClO4, FSO3H) при растворении в H2SO4 ведут себя как слабые кислоты, то есть протон у них отщепляется легче, чем у H2SO4, что приводит к росту концентрации сольватированного протона , например,
HSO3F + H2SO4
+ SO3F- .
кислота
Некоторые свойства оксокислот халькогенов (VI) приведены в табл.9.
Таблица 9.Свойства оксокислот халькогенов Э(VI).
|
| H2SeO4 | H2TeO4 . 2H2O=H6TeO6 |
pK1: Н2ЭО4 =Н++НЭO4- pK2: | - 3.0 1.92 | - 1.0 2.0 | 7.7 - |
Ео, В; рН = 0:
|
0.16 |
|
|
|
| 1.15 |
|
|
|
| 1.04 |
Ео, В; рН = 14:
|
-0.93 |
0.03 |
+0.40 |
Серная и селеновая кислоты являются сильными двухосновными кислотами и близки по структуре и свойствам между собой. Их константы диссоциации в водных растворах одного порядка (К2 для и
равны 1.2. 10-2 и 2.19. 10-2, соответственно), селенаты изоморфны с сульфатами) , образуя, например, квасцы состава МAl(SeO4)3 . 12H2O, где М - тяжелый щелочной металл.
Строение ортотеллуровой кислоты H6TeO6 отличается от строения серной и селеновой кислот (сравнить с кислородными кислотами галогенов HClO4, HBrO4 и H5IO6). Кристаллическая структура твердой H6TeO6 (т.пл. 136оС) построена из молекул правильной октаэдрической формы, которые сохраняют свою форму и в растворах. Теллураты не изоморфны с сульфатами и селенатами. Ортотеллуровая кислота щелочью титруется как одноосновная с образованием солей MITeO(OH)5, она слабее угольной кислоты. Получены продукты полного (Ag6TeO6 , Na6TeO6) и частичного (NaH5TeO6, Na2H4TeO6, Na4H2TeO6) замещения протонов ионами металлов.
Селеновая кислота более сильный окислитель, чем Н2SO4 и Н6ТеО6 (табл.9). Она растворяет без нагревания Cu и даже Au: 2Au + 6H2SеO4 Au2(SeO4)3 + 3 H2SeO3 + 2H2O, окисляет ионы галогенидов, кроме фторида, до свободных галогенов, под ее действием воспламеняется клетчатка. Ортотеллуровая кислота также более сильный окислитель, чем серная кислота. Наиболее частым продуктом восстановления H2SeO4 и H6TeO6 являются простые вещества.
Серная кислота обладает сильными окислительными свойствами только в концентрированном виде и при нагревании: