Халькогены (791993), страница 8
Текст из файла (страница 8)
Cu + 2 H2SO4 CuSO4 + SO2 + 2H2O .
Продуктами ее восстановления в зависимости от условий проведения реакций могут быть SO2 (при избытке H2SO4), H2S, S, , политионаты (при недостатке H2SO4).
В ряду -
- H5Te
наблюдается аномалия в последовательности изменения термодинамической cтабильности и окислительной способности: селеновая кислота и ее соли термодинамически оказываются менее стабильными и более сильными окислителями, чем соответствующие кислоты и соли S(VI) и Te(VI). Наклон линии, соединяющей вольт-эквивалентные пары
, больше, чем наклон соответствующих линий для H6TeO6- H2TeO3 и
- H2SO3 (рис.7). Больший потенциал пары
/
по сравнению с парами H6TeO6 / H2TeO3 и
/ H2SO3 приводит к тому, что H2SеO4, например, выделяет хлор из концентрированной HCl: H2SеO4 + 2HCl = =Cl2 + H2SeO3 + H2O. Аналогичные немонотонные изменения свойств элементов и их соединений, в частности, оксокислот, наблюдаются и для других элементов 4-го периода, например,
, и иногда называются вторичной периодичностью . Можно полагать, что рассматриваемые аномалии связаны с понижением прочности связи Se- O по сравнению со связью S- O. В свою очередь, это вызвано увеличением размера и энергий 4s- и 4p-орбиталей атома селена по сравнению с размером и энергиями 2s- и 2p-орбиталей кислорода, и следовательно, с уменьшением взаимодействия (перекрывания) 4s-, 4p-орбиталей селена и 2s, 2p-орбиталей кислорода (энергии 2s-, 2p-, 3s-, 3p-, 4s- и 4p-атомных орбиталей составляют - 32.4, - 15.9, - 20.7, - 12.0, - 17.6 и - 9.1эВ, соответственно). Повышение стабильности и уменьшение окислительной способности оксосоединений при переходе от Se(VI) к Te(VI) обусловлено особенностями строения и увеличением прочности связи Te- O в октаэдрических ионах TeO6 по сравнению со связью Se- O в тетраэдрах
. Атом теллура по сравнению в атомом селена имеет бу льший радиус, для него характерно координационное число 6. Увеличение числа координируемых атомов кислорода приводит к росту числа электронов на связывающих молекулярных орбиталях и, соответственно, к повышению прочности связи.
§ 13. Многообразие оксокислот серы (VI).
Серную кислоту H2SO4 правильнее называть ортосерной кислотой, так как в ней содержится наибольшее число гидроксильных групп, связанных с одним атомом серы (VI). При дегидратации H2SO4 или при насыщении водного раствора серной кислоты триоксидом серы: H2SO4 + SO3 = H2S2O7 два тетраэдра связываются общим атомом кислорода в вершине тетраэдра в дисерную кислоту H2S2O7 (рис.9, направление I).
Известны олигомерные ионы (SnO3n+1)2- , где n = 1,2,3,....
Большинство оксокислот серы (VI) генетически удобно рассматривать как результат замещения кислорода или гидроксильной группы на изоэлектронные частицы.
При замещении в H2SO4 концевого атома кислорода на атом серы (направление II на рис.9) и атом селена образуется тиосерная кислота H2S2O3 и селеносерная H2SSeO3 кислота, соответственно. В свою очередь, замещение мостикового атома кислорода в дисерной кислоте на один или цепочку атомов серы (путь III на рис.9) возникает ряд политионовых кислот, а на пероксидную группу - О- О- (путь IV на рис.9) - пероксодисерная кислота. Гидроксильная группа - ОН в H2SO4 может заместиться на гидропероксогруппу - ООН (путь V на рис.9) с образованием пероксомоносерной кислоты, или кислоты Каро H2SO5, а также на атом галогена или аминогруппу - NH2 (путь VI на рис.9) с образованием галогенсульфоновой (Х = F, Cl) или сульфаминовой (NH2)(HO)SO2 кислот, соответственно.
Рис.9. Схема оксокислот серы (VI).
Для наглядности упоминаемые выше наиболее стабильные оксоанионы серы изображены в виде геометрических фигур на рис.П.1 в приложении.
§ 13.1 Тиосерная кислота и тиосульфаты.
При кипячении раствора сульфита натрия с порошком серы образуется тиосульфат натрия Na2S2O3:
Свободная тиосерная кислота H2S2O3 в присутствии воды необратимо распадается по упрощенной схеме: H2S2O3 H2SO3 + S
H2O + SO2+ S, поэтому выделить ее из водных растворов невозможно. Свободная кислота получена при низкотемпературном взаимодействии сероводорода и хлорсульфоновой кислоты: HSO3Cl + H2S
H2S2O3 + HCl. Ниже 0оС H2S2O3 количественно распадается: 3H2S2O3
3H2O + 2SO3 + S (интересно сопоставить эту реакцию с распадом серной кислоты H2SO4
H2O+SO3 выше ее температуры кипения).
В отличие от кислоты ее устойчивые соли легко образуются при взаимодействии растворов сульфитов с H2S: или при кипячении их растворов с серой* ):
, а также при окислении полисульфидов кислородом воздуха: CaS2+ 3/2 O2
CaS2O3 или Na2S5 + 3/2 O2
Na2S2O3 +3S.
По строению ион тиосульфата близок к иону : тетраэдр [SO3S] несколько искажен из-за большей длины связи S-S (1.97
) по сравнению со связью S- O (1.48
).
В связи с наличием атомов серы в степени окисления - 2 ион обладает восстановительными свойствами, например, слабыми окислителями (I2, Fe3+) тиосульфат окисляется до иона тетратионата: 2S2O32- + I2
S4 O6 2- + 2I- , а более сильными окислителями - до иона сульфата:
(в связи с использованием в последней реакции ранее тиосульфат называли "антихлором").
Сильными восстановителями ион восстанавливается до производных S(2-):
Тиосульфат-ион - сильный комплексообразователь, использующийся в фотографии для удаления из фотопленки невосстановленного бромида серебра:
.
Отметим, что металлами S2O32- ион координируется через атом серы, поэтому тиосульфатные комплексы легко превращаются в соответствующие сульфиды, например,
.
§ 13.2. Политионовые кислоты и их соли.
При замещении мостикового кислорода в дисерной кислоте на один или цепочку атомов серы возникают ди- , три- и другие политионовые кислоты H2SnO6, где 2 n
22 (рис.8, направление III).
Благодаря возникновению связи S-S степень окисления атомов серы в дитионовой кислоте HO3S-SO3H считается пониженной до +5. Кислота в свободном виде не выделена, однако обменным взаимодействием Ba2S2O6 + H2SO4
BaSO4 + H2S2O6 получены ее достаточно концентрированные растворы. Соли, дитионаты, синтезируют окислением водных растворов SO2 суспензиями порошков оксидов марганца или железа (MnO2, Fe2O3): MnO2 + 2 SO2
MnS2O6 .При n
і 3 степень окисления серы в политионовых кислотах H2SnO6 уменьшается ниже +4
и т.д.). Сложные политионаты, содержащие до 23 атомов серы, получены из тиосульфатов с помощью SCl2 или S2Cl2, например, K2S2O3+ +S2Cl2
K2SnO6 + 2KCl (3
n
22). Сера благодаря способности к катенации и разнообразию степеней окисления образует множество оксокислот различной устойчивости. Термодинамическую стабильность и взаимный переход соединений серы с разной степенью окисления удобно сопоставить с помощью диаграммы окислительных состояний (рис.10).
Рис.10. Диаграмма окислительных состояний серы (рН=0).
Из этой диаграммы следует, что Н2S термодинамически может восстанавливать все оксокислоты до свободной серы. Кроме того, поскольку вольтэквиваленты оксокислот промежуточных степеней окисления лежат выше линии, соединяющей вольтэквиваленты и S, то указанные оксокислоты могут диспропорционировать на серную кислоту и серу. Окислителями средней силы их можно окислять до H2SO4, а сильными восстановителями (Zn+H+, Al+OH-) - восстановить до сероводорода или его солей. В соответствии с диаграммой окислительных состояний дитионаты сильными окислителями (KMnO4, K2Cr2O7) окисляются до сульфатов:
, а сильными восстановителями (например, амальгама натрия, Na/Hg) восстанавливаются до сульфитов и дитионитов
:
.
§ 13.3. Пероксиды и галогенсульфоновые кислоты
При замене мостикового кислорода пиросерной кислоты на перекисную группу -О-О- образуется пероксодисерная кислота H2S2O8 (рис.9, направление IV). Ее синтезируют электролизом водного раствора H2SO4 : 2 H2SO4 + 2
H2S2O8 + 2Н+, а наиболее важные соли, пероксодисульфаты (персульфаты) K2S2O8 и (NH4)2 S2O8, - анодным окислением сульфатов: 2KHSO4 = K2S2O8 + H2 .
Структура иона представляет собой 2 тетраэдра SO4, соединенных между собой пероксидной группой -О-О. Кислота смешивается с водой в любых пропорциях. Реакция взаимодействия с водой используется для получения перекиси водорода:
H2S2O8 + 2 H2O 2H2SO4 + H2O2.