Халькогены (791993), страница 3
Текст из файла (страница 3)
В областях существования конденсированных и газообразной форм серы устойчива только 1 фаза. Такому равновесию отвечают две степени свободы. Каждая кривая соответствует двухфазному равновесию, характеризующемуся одной степенью свободы.
В отличие от диаграммы состояния воды с одной тройной точкой на аналогичной диаграмме серы (рис.2) таких точек 3 (А, В и С). В каждой из них сосуществуют 3 фазы (например, в точке А - твердая ромбическая + твердая моноклинная + газообразная сера), и число степеней свободы равно О. Параметры таких тройных точек являются характеристическими константами вещества.
Термодинамически устойчивая в стандартных условиях -ромбическая модификация серы состоит из циклических молекул S8. Молекула имеет форму короны, в которой длины
всех связей S- S равны 2.06 и валентный угол 108о (близкий к тетраэдрическому). При медленном нагревании
-сера обратимо переходит в
-моноклинную серу, кристаллы которой построены из таких же циклических коронообразных молекул S8, но в пространстве расположены по-другому. При закалке (быстром охлаждении) расплавленной серы от температур выше 300оС образуется метастабильная пластическая сера, образованная спиральными цепями с левым и правым винтовым вращением. Все без исключения модификации серы при комнатной температуре с течением времени превращаются в устойчивую ромбическую
-серу.
У селена также известны различные модификации. Три моноклинные модификации красного селена ( ,
и
) образованы циклическими молекулами Se8 и различаются только способами их пространственной упаковки в кристаллах. Наиболее устойчивы у селена и теллура гексагональные модификации, образованные спиральными цепями атомов. В них каждый атом халькогена связан ковалентными связями с двумя своими ближайшими соседями по цепочке. Между параллельными цепочками действуют слабые межмолекулярные силы. Благодаря им Se и Те обладают сравнительно низкими температурами плавления.
У металлического Ро известны 2 кристаллические модификации - низко- и высокотемпературная (кубическая и гексагональная), с температурой перехода 309 К.
§ 2.4. Поведение халькогенов при плавлении и испарении.
Свойства простых неметаллических веществ существенным образом зависят от строения их молекул и взаимодействия между ними. Рассмотрим в качестве примера изменение свойств серы при плавлении.
При плавлении кристаллов серы (Т=99.5оС) разрываются слабые межмолекулярные связи и освобождаются циклические молекулы S8, приобретающие при этом легкую подвижность. Вязкость расплава в этих условиях меньше вязкости воды. При 159.4оС все свойства жидкой серы изменяются скачкообразно (теплоемкость, плотность, сжимаемость, цвет, электропроводность, поверхностное натяжение и др.). Особенно резко меняется вязкость расплава, которая при нагревании до 195оС возрастает в 10 тысяч раз (расплав перестает выливаться из пробирки). Это связано с процессом двухступенчатой полимеризации, в результате которой образуются гомоцепи:
цикл - S8 цепь - S8
цепь - S8 + цикл - S8 цепь - S16 и т.д.
В результате полимеризации, протекающей по бирадикальному механизму, при ~ 180оС собираются цепи длиной более 200 тысяч атомов серы. При дальнейшем нагревании вязкость расплава понижается из-за начинающейся деполимеризации. Цепи постепенно укорачиваются до ~ 1000 атомов при 400оС и до ~ 100 атомов при 600оС. Выше 445оC давление насыщенного пара над жидкой серой превышает 105 Па (1атм). В паре присутствуют все молекулы Sn (2 n
10), включая молекулы с нечетным числом атомов.
В структуре твердого и жидкого селена (Г.Г.Девятых, М.Ф.Чурбанов "Высокочистые халькогены", Горький,1974, с.243) содержатся цепи и циклы Se8. В отличие от серы селен не имеет температурной области, в которой его расплав состоял бы только из циклических молекул. При нагревании до 620оС степень полимеризации и вязкость возрастают, а в интервале 620-920оС уменьшаются. В теллуре в соответствии с увеличением доли металлической связи по сравнению с серой и селеном циклические структуры не присутствуют ни в твердой, ни в жидкой фазах. В паре над селеном и теллуром присутствуют молекулы Sen (2 n
9) и Теn (2
n
7).
§ 3. Химические свойства халькогенов.
Сера - химически активное вещество, особенно при повышенных температурах, облегчающих разрыв связей S- S. Она непосредственно соединяется с многими простыми веществами, за исключением инертных газов, N, Te, I, Pt, Au. Однако соединения серы с азотом, теллуром, иодом, платиной и золотом синтезированы косвенными методами.
Сера медленно реагирует с Н2 при 120оС и значительно быстрее при температуре выше 200оС, образуя Н2S, сгорает во фторе с образованием SF6. Реакция серы с хлором сильно ускоряется при нагревании: ее продуктами являются S2Cl2 и SCl2. Во влажном
воздухе сера медленно окисляется, на воздухе при 250-260оС сгорает до SО2.
Реакционная способность серы определяется особенностью строения и прочностью связи S- S в молекулах Sn. Циклические молекулы S8 в твердой сере менее активны, чем бирадикальные цепочки S8, образующиеся в расплаве (см. § 2.4). Получаемая фотолизом паров атомарная сера отличается очень высокой реакционной способностью.
Как и у молекулярного кислорода (см. § 2.2), у молекулярной серы возможны два электронных состояния: триплетное и синглетное с разными химическими активностями.
Основное триплетное состояние с двумя неспаренными электронами лежит на 110.52 кДж/моль ниже возбужденного синглетного состояния без неспаренных электронов. Например, парафиновые углеводороды инертны к триплетной сере, но в присутствии синглетной серы образуют меркаптаны: RH + S RSH.
Se, Te и Po соединяются непосредственно с большинством простых веществ, хотя и труднее, чем О и S. Среди их соединений наиболее устойчивы селениды, теллуриды и полониды металлов, но их устойчивость ниже, чем у аналогичных оксидов и сульфидов.
С сильно электроотрицательными элементами (F, O и Cl) халькогены проявляют положительные степени окисления +2, +4 и +6.
Как и элементы VII группы, халькогены диспропорционируют в воде:
2/n Эn + Н2О Н2Э + Н2ЭО3.
Равновесие существенно смещается в сторону продуктов реакции при кипячении и в присутствии щелочей:
3Э + 6NaOH 2Na2Э + Na2ЭО3 + 3Н2О.
§ 4. Халькогены в природе. Получение простых веществ.
В природе халькогены сосредоточены в рудных месторождениях, где они связаны преимущественно с металлами. Значительная часть серы находится либо в самородном состоянии (вулканическая сера), либо в форме сульфидов и сульфатов (CuFeS2 - халькопирит, ZnS - сфалерит, FeAsS - арсенит, CaSO4. 2H2O - гипс, Na2SO4. 10Н2О - мирабилит). Большие месторождения самородной серы находятся в США, в России они расположены в районе Самарской Луки на Волге. Огромное количество серы содержится в нефти и в нефтяных газах, откуда их извлекают в процессе технологической очистки. Присутствие соединений серы в нефти создает экологические и технологические проблемы. Например, в газовых месторождениях около Астрахани содержание Н2S достигает десятков процентов. Без глубокой очистки такие газы нельзя сжигать из-за химического отравления природы сернистым газом и нельзя перекачивать из-за сероводородной коррозии трубопроводов, скорость которой достигает нескольких мм в год.
Из подземных месторождений серу извлекают, расплавляя ее перегретой водой (165оС) и выдавливая из-под земли сжатым воздухом. Расплав перекачивают в емкости или распыляют в воду для получения тонкого порошка. При этом получают продукт чистотой 99.5-99.9% без примесей Se, Te и As.
Серу из сероводорода получают процессом Клауса. Около 1/3 объема извлеченного из нефти H2S сжигают до SO2, H2O и паров серы:
(Аналогичный процесс происходит при попадании воды в кратеры вулканов, а также в глубине Земли в результате деятельности микроорганизмов)
Затем остальную часть H2S в присутствии оксидных катализаторов (Fe2O3, AlO3) подвергают взаимодействию с SO2:
Основным источником Se и Te служит шлам после электролитической очистки меди, который содержит значительные количества Ag, Au и платиновых металлов. Шлам подвергают окислительному обжигу с содой:
При отсутствии соды происходит улетучивание SeO2:
Разделение Se и Te достигается обработкой серной кислотой:
Na2SeO3 + Na2TeO3 + H2SO4
TeO2. nH2O + H2SеO3 + 2Na2SO4 .
Теллур осаждается в виде гидратированного диоксида, H2SeO3 остается в растворе. Из этого раствора действием SO2 осаждают красный Se чистотой 99.5%:
H2SeO3 + 2SO2 + H2O
Se + 2H2SO4 .
Гидратированный ТеО2 растворяют в щелочи и подвергают электролитическому восстановлению до Те: