Главная » Просмотр файлов » Е. Деза_ М.М. Деза. Энциклопедический словарь расстояний (2008)

Е. Деза_ М.М. Деза. Энциклопедический словарь расстояний (2008) (1185330), страница 50

Файл №1185330 Е. Деза_ М.М. Деза. Энциклопедический словарь расстояний (2008) (Е. Деза_ М.М. Деза. Энциклопедический словарь расстояний (2008).pdf) 50 страницаЕ. Деза_ М.М. Деза. Энциклопедический словарь расстояний (2008) (1185330) страница 502020-08-25СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 50)

É‡Ù ̇Á˚‚‡ÂÚÒfl ÍÓ̘Ì˚Ï (·ÂÒÍÓ̘Ì˚Ï), ÂÒÎË ÏÌÓÊÂÒÚ‚Ó V Â„Ó ‚Â¯ËÌ ÍÓ̘ÌÓ (ËÎËÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ·ÂÒÍÓ̘ÌÓ). èÓfl‰ÍÓÏ ÍÓ̘ÌÓ„Ó „‡Ù‡ ̇Á˚‚‡ÂÚÒfl ÍÓ΢ÂÒÚ‚ÓÂ„Ó ‚Â¯ËÌ; ‡ÁÏÂÓÏ ÍÓ̘ÌÓ„Ó „‡Ù‡ ̇Á˚‚‡ÂÚÒfl ˜ËÒÎÓ Â„Ó ·Â.É‡Ù ËÎË ÓËÂÌÚËÓ‚‡ÌÌ˚È „‡Ù ÒÓ‚ÏÂÒÚÌÓ Ò ÙÛÌ͈ËÂÈ, ÔËÔËÒ˚‚‡˛˘ÂÈÔÓÎÓÊËÚÂθÌ˚È ‚ÂÒ Í‡Ê‰ÓÏÛ ·Û, ̇Á˚‚‡ÂÚÒfl ‚Á‚¯ÂÌÌ˚Ï „‡ÙÓÏ ËÎË ÒÂÚ¸˛.ëÂÚ¸ Ú‡ÍÊ ̇Á˚‚‡˛Ú ͇͇ÒÓÏ ‚ ÚÓÏ ÒÎÛ˜‡Â ÍÓ„‰‡ ‚ÂÒ‡ ËÌÚÂÔÂÚËÛ˛ÚÒfl ͇͉ÎËÌ˚ ·Â ‚ÓÁÏÓÊÌÓ„Ó ‚ÎÓÊÂÌËfl ‚ ÌÂÍÓÚÓÓ ‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó. Ç ÚÂÏË̇ı ÚÂÓËË ÔÓ˜ÌÓÒÚË ·‡ ͇͇҇ ̇Á˚‚‡˛ÚÒfl ÔÛÚ¸flÏË (Ó·˚˜ÌÓ Ó‰Ë̇ÍÓ‚ÓȉÎËÌ˚); ÚÂÌÒ„ËÚË – ˝ÚÓ Í‡͇Ò̇fl ÒÚÛÍÚÛ‡, ‚ ÍÓÚÓÓÈ ÔÛÚ¸fl fl‚Îfl˛ÚÒfl ÎË·Ó˝ÎÂÏÂÌÚÓÏ Ì‡ÚflÊÂÌËfl – ÚÓÒ‡ÏË (Ú.Â.

Ì ÏÓ„ÛÚ ÓÚ‰‡ÎËÚ¸Òfl ‰Û„ ÓÚ ‰Û„‡), ÎË·Ó˝ÎÂÏÂÌÚÓÏ ÒʇÚËfl – ‡ÒÔÓ͇ÏË (Ú.Â. Ì ÏÓ„ÛÚ Ò·ÎËÁËÚ¸Òfl).èÓ‰„‡ÙÓÏ „‡Ù‡ G ̇Á˚‚‡ÂÚÒfl „‡Ù G', ‚Â¯ËÌ˚ Ë ·‡ ÍÓÚÓÓ„Ó Ó·‡ÁÛ˛ÚÔÓ‰ÏÌÓÊÂÒÚ‚‡ ‚Â¯ËÌ Ë ·Â „‡Ù‡ G. ÖÒÎË G' fl‚ÎflÂÚÒfl ÔÓ‰„‡ÙÓÏ G, ÚÓ „‡Ù ĠÁ˚‚‡ÂÚÒfl ÒÛÔÂ„‡ÙÓÏ „‡Ù‡ G ' . à̉ۈËÓ‚‡ÌÌ˚È ÔÓ‰„‡Ù – ÔÓ‰ÏÌÓÊÂÒÚ‚Ó‚Â¯ËÌ „‡Ù‡ G ‚ÏÂÒÚ ÒÓ ‚ÒÂÏË ·‡ÏË, Ó·Â ÍÓ̘Ì˚ ÚÓ˜ÍË ÍÓÚÓ˚ıÔË̇‰ÎÂÊ‡Ú ‰‡ÌÌÓÏÛ ÔÓ‰ÏÌÓÊÂÒÚ‚Û.É‡Ù G = (V, E) ̇Á˚‚‡ÂÚÒfl Ò‚flÁÌ˚Ï, ÂÒÎË ‰Îfl β·˚ı ‚Â¯ËÌ u, v ∈ V ÒÛ˘ÂÒÚ‚ÛÂÚ (u – v) ÔÛÚ¸, Ú.Â. ڇ͇fl ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ ·Â uw1 = w0 w 1 , w1 w 2 ,…, wn–1w n == w n–1 v ËÁ Ö, ˜ÚÓ wi ≠ wj ‰Îfl i ≠ j, i, j ∈ {0, 1,…, n}.

é„‡Ù D = (V, E) ̇Á˚‚‡ÂÚÒflÒËθÌÓ Ò‚flÁÌ˚Ï, ÂÒÎË ‰Îfl β·˚ı ‚Â¯ËÌ u, v ∈ V ÒÛ˘ÂÒÚ‚Û˛Ú Í‡Í ÓËÂÌÚËÓ‚‡ÌÌ˚È (u – v) ÔÛÚ¸, Ú‡Í Ë ÓËÂÌÚËÓ‚‡ÌÌ˚È (v – u) ÔÛÚ¸. ã˛·ÓÈ Ï‡ÍÒËχθÌ˚ÈÒ‚flÁÌ˚È ÔÓ‰„‡Ù „‡Ù‡ G ̇Á˚‚‡ÂÚÒfl Â„Ó Ò‚flÁÌÓÈ ÍÓÏÔÓÌÂÌÚÓÈ.ëÓ‰ËÌÂÌÌ˚ ·ÓÏ ‚Â¯ËÌ˚ ̇Á˚‚‡˛ÚÒfl ÒÏÂÊÌ˚ÏË. ëÚÂÔÂ̸ deg(v) ‚Â¯ËÌ˚v ∈ V „‡Ù‡ G = (V, E) ‡‚̇ ˜ËÒÎÛ Â„Ó ‚Â¯ËÌ, ÒÏÂÊÌ˚ı Ò v.èÓÎÌ˚Ï „‡ÙÓÏ Ì‡Á˚‚‡ÂÚÒfl „‡Ù, ͇ʉ‡fl Ô‡‡ ‚Â¯ËÌ ÍÓÚÓÓ„Ó ÒÓ‰ËÌÂ̇·ÓÏ. тۉÓθÌ˚È „‡Ù – „‡Ù, ‚ ÍÓÚÓÓÏ ÏÌÓÊÂÒÚ‚Ó ‚Â¯ËÌ V ‡Á·Ë‚‡ÂÚÒfl ̇‰‚‡ Ú‡ÍËı ÌÂÔÂÂÒÂ͇˛˘ËıÒfl ÔÓ‰ÏÌÓÊÂÒÚ‚‡, ˜ÚÓ ‚ Ó‰ÌÓÏ Ë ÚÓÏ Ê ÔÓ‰ÏÌÓÊÂÒÚ‚ÂÌÂÚ ÌË Ó‰ÌÓÈ Ô‡˚ ÒÏÂÊÌ˚ı ‚Â¯ËÌ.

èÛÚ¸ – ˝ÚÓ ÔÓÒÚÓÈ Ò‚flÁÌ˚È „‡Ù, ‚ ÍÓÚÓÓω‚ ‚Â¯ËÌ˚ ËÏÂ˛Ú ÒÚÂÔÂ̸ 1, ‡ ‰Û„Ë ‚Â¯ËÌ˚, ÂÒÎË ÓÌË ÒÛ˘ÂÒÚ‚Û˛Ú, ËϲÚÒÚÂÔÂ̸ 2; ‰ÎËÌÓÈ ÔÛÚË fl‚ÎflÂÚÒfl ˜ËÒÎÓ Â„Ó ·Â. ñËÍÎÓÏ fl‚ÎflÂÚÒfl Á‡ÏÍÌÛÚ˚ÈÔÛÚ¸, Ú.Â. ÔÓÒÚÓÈ Ò‚flÁÌ˚È „‡Ù, ͇ʉ‡fl ‚Â¯Ë̇ ÍÓÚÓÓ„Ó ËÏÂÂÚ ÒÚÂÔÂ̸ 2.ÑÂÂ‚Ó – ˝ÚÓ ÔÓÒÚÓÈ Ò‚flÁÌ˚È „‡Ù, Ì Ëϲ˘ËÈ ˆËÍÎÓ‚.227É·‚‡ 15.

ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË „‡ÙÓ‚Ñ‚‡ „‡Ù‡, ÒÓ‰Âʇ˘Ë ӉË̇ÍÓ‚Ó ˜ËÒÎÓ Ó‰Ë̇ÍÓ‚Ó ÒÓ‰ËÌÂÌÌ˚ı ‚Â¯ËÌ,̇Á˚‚‡˛ÚÒfl ËÁÓÏÓÙÌ˚ÏË. îÓχθÌÓ, ‰‚‡ „‡Ù‡ G = (V(G), E(G )) Ë H = (V(H),E(H)) ̇Á˚‚‡˛ÚÒfl ËÁÓÏÓÙÌ˚ÏË, ÂÒÎË ÒÛ˘ÂÒÚ‚ÛÂÚ ·ËÂ͈Ëfl f : V(G) → V(H), ڇ͇fl˜ÚÓ ‰Îfl β·˚ı u, v ∈V(G) ·Ó uv ∈ E(G) ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ·Ó f(u)f(v)∈ E(H).å˚ ·Û‰ÂÏ ‡ÒÒÏÓÚË‚‡Ú¸ ÚÓθÍÓ ÔÓÒÚ˚ ÍÓ̘Ì˚ „‡Ù˚ Ë Ó„‡Ù˚, ÚÓ˜ÌÂÂÍ·ÒÒ˚ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË Ú‡ÍËı ËÁÓÏÓÙÌ˚ı „‡ÙÓ‚.15.1.

êÄëëíéüçàü çÄ ÇÖêòàçÄï ÉêÄîÄåÂÚË͇ ÔÛÚËåÂÚËÍÓÈ ÔÛÚË (ËÎË ÏÂÚËÍÓÈ „‡Ù‡, ÏÂÚËÍÓÈ Í‡Ú˜‡È¯Â„Ó ÔÛÚË) dpatḣÁ˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â ‚Â¯ËÌ „‡Ù‡ G = (V, E), ÓÔ‰ÂÎÂÌ̇fl ‰Îflβ·˚ı u, v ∈ V Í‡Í ‰ÎË̇ Í‡Ú˜‡È¯Â„Ó (u – v) ÔÛÚË ‚ G. ä‡Ú˜‡È¯ËÈ (u – v) ÔÛڸ̇Á˚‚‡ÂÚÒfl „ÂÓ‰ÂÁ˘ÂÒÍÓÈ ÎËÌËÂÈ. ëÓÓÚ‚ÂÚÒÚ‚Û˛˘Â ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó̇Á˚‚‡ÂÚÒfl „‡Ù˘ÂÒÍËÏ ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ, Ò‚flÁ‡ÌÌ˚Ï Ò „‡ÙÓÏ G.åÂÚË͇ ÔÛÚË „‡Ù‡ ä˝ÎË É ÍÓ̘ÌÓ ÔÓÓʉÂÌÌÓÈ „ÛÔÔ˚ (G, ⋅ , e) ̇Á˚‚‡ÂÚÒflÒÎÓ‚‡ÌÓÈ ÏÂÚËÍÓÈ.

åÂÚË͇ ÔÛÚË „‡Ù‡ G = (V, E), Ú‡ÍÓ„Ó ˜ÚÓ V ÏÓÊÂÚ ·˚Ú¸ˆËÍ΢ÂÒÍË ÛÔÓfl‰Ó˜ÂÌÌÓ ‚ „‡ÏËθÚÓÌÓ‚ÓÏ ˆËÍÎÂ, ̇Á˚‚‡ÂÚÒfl „‡ÏËθÚÓÌÓ‚ÓÈÏÂÚËÍÓÈ. åÂÚË͇ „ËÔÂÍÛ·‡ – ÏÂÚË͇ ÔÛÚË „‡Ù‡ „ËÔÂÍÛ·‡ ç(m , 2) Ò ÏÌÓÊÂÒÚ‚ÓÏ ‚Â¯ËÌ V = {0, 1}m , ·‡ ÍÓÚÓÓ„Ó fl‚Îfl˛ÚÒfl Ô‡‡ÏË ‚ÂÍÚÓÓ‚ x, y ∈∈ {0, 1}m, Ú‡ÍËÏË ˜ÚÓ | {i ∈ {1,…, n}: x i ≠ yi} | = 1; Ó̇ ‡‚̇ | {i ∈ {1,…, n}:xi ≠ 1}∆{i ∈ {1,…, n}: y i = 1 |.

É‡Ù˘ÂÒÍÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Â „‡ÙÛ „ËÔÂÍÛ·‡, ̇Á˚‚‡ÂÚÒfl ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ „ËÔÂÍÛ·‡.éÌÓ ÒÓ‚Ô‡‰‡ÂÚ Ò ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ ({0, 1}m , dl1 ).ÇÁ‚¯ÂÌ̇fl ÏÂÚË͇ ÔÛÚËÇÁ‚¯ÂÌ̇fl ÏÂÚË͇ ÔÛÚË dwpath ÂÒÚ¸ ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â ‚Â¯ËÌ V Ò‚flÁÌÓ„Ó‚Á‚¯ÂÌÌÓ„Ó „‡Ù‡ G = (V, E) Ò ÔÓÎÓÊËÚÂθÌ˚ÏË ‚ÂÒ‡ÏË e·Â (w(e)) e ∈ E,ÓÔ‰ÂÎÂÌ̇fl ͇ÍminP∑ w(e),e ∈P„‰Â ÏËÌËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ (u – v) ÔÛÚflÏ ê ‚ G.ê‡ÒÒÚÓflÌË ӷıÓ‰‡ê‡ÒÒÚÓflÌË ӷıÓ‰‡ – ‡ÒÒÚÓflÌË ̇ ÏÌÓÊÂÒÚ‚Â ‚Â¯ËÌ V Ò‚flÁÌÓ„Ó „‡Ù‡ G == (V, E), ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í ‰ÎË̇ Ò‡ÏÓ„Ó ‰ÎËÌÌÓ„Ó Ë̉ۈËÓ‚‡ÌÌÓ„Ó ÔÛÚË(Ú.Â.

ÔÛÚË, ÍÓÚÓ˚È fl‚ÎflÂÚÒfl Ë̉ۈËÓ‚‡ÌÌ˚Ï ÔÓ‰„‡ÙÓÏ „‡Ù‡ G) ËÁ ‚Â¯ËÌ˚ u‚ ‚Â¯ËÌÛ v ∈ V.Ç Ó·˘ÂÏ ÒÎÛ˜‡Â ÓÌÓ Ì fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ. É‡Ù ̇Á˚‚‡ÂÚÒfl „‡ÙÓÏ Ó·ıÓ‰‡,ÂÒÎË Â„Ó ‡ÒÒÚÓflÌË ӷıÓ‰‡ ÒÓ‚Ô‡‰‡ÂÚ Ò ÏÂÚËÍÓÈ ÔÛÚË (ÒÏ., ̇ÔËÏÂ, [CJT93]).䂇ÁËÏÂÚË͇ ÔÛÚË ‚ Ó„‡Ù‡ı䂇ÁËÏÂÚË͇ ÔÛÚË ‚ Ó„‡Ù‡ı ddpath ÂÒÚ¸ Í‚‡ÁËÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â ‚Â¯ËÌV ÒËθÌÓ Ò‚flÁÌÓ„Ó ÓËÂÌÚËÓ‚‡ÌÌÓ„Ó „‡Ù‡ D = (V, E), ÓÔ‰ÂÎÂÌ̇fl ‰Îfl β·˚ı u,v ∈ V Í‡Í ‰ÎË̇ Í‡Ú˜‡È¯Â„Ó ÓËÂÌÚËÓ‚‡ÌÌÓ„Ó (u – v) ÔÛÚË ‚ „‡Ù D. ïÓÓ¯ËÈÚ‡ÍÒËÒÚ ÔË ÂÁ‰Â ÔÓ „ÓÓ‰ÒÍËÏ ÛÎˈ‡Ï Ò Ó‰ÌÓÒÚÓÓÌÌËÏ ‰‚ËÊÂÌËÂÏ ‰ÓÎÊÂÌÔÓθÁÓ‚‡Ú¸Òfl ‰‡ÌÌÓÈ Í‚‡ÁËÏÂÚËÍÓÈ.228ó‡ÒÚ¸ IV.

ê‡ÒÒÚÓflÌËfl ‚ ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍÂñËÍ΢ÂÒ͇fl ÏÂÚË͇ ‚ Ó„‡Ù‡ıñËÍ΢ÂÒÍÓÈ ÏÂÚËÍÓÈ ‚ Ó„‡Ù‡ı ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â ‚Â¯ËÌ VÒËθÌÓ Ò‚flÁÌÓ„Ó ÓËÂÌÚËÓ‚‡ÌÌÓ„Ó „‡Ù‡ D = (V, E), ÓÔ‰ÂÎÂÌ̇fl ͇Íddpath (u, v) + ddpath (v, u),„‰Â ddpath – Í‚‡ÁËÏÂÚË͇ ÔÛÚË ‚ Ó„‡Ù‡ı.-ÏÂÚË͇ÑÎfl Í·ÒÒ‡ ϒ Ò‚flÁÌ˚ı „‡ÙÓ‚ ÏÂÚË͇ d ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X, d)̇Á˚‚‡ÂÚÒfl -ÏÂÚËÍÓÈ, ÂÒÎË (X, d) ËÁÓÏÂÚ˘ÌÓ ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚Û ÏÂÚ˘ÂÒÍÓ„ÓÔÓÒÚ‡ÌÒÚ‚‡ (V, dwpath), „‰Â „‡Ù G = (V, E) ∈ ϒ Ë dwpath – ‚Á‚¯ÂÌ̇fl ÏÂÚË͇ ÔÛÚË̇ ÏÌÓÊÂÒÚ‚Â ‚Â¯ËÌ V „‡Ù‡ G Ò ÔÓÎÓÊËÚÂθÌÓÈ ÙÛÌ͈ËÂÈ ·ÂÌ˚ı ‚ÂÒÓ‚ w (ÒÏ.‰‚ӂˉ̇fl ÏÂÚË͇).Ñ‚ӂˉ̇fl ÏÂÚË͇Ñ‚ӂˉ̇fl ÏÂÚË͇ (ËÎË ‚Á‚¯ÂÌ̇fl ÏÂÚË͇ ‰Â‚‡) d ̇ ÏÌÓÊÂÒÚ‚Â ï ÂÒÚ¸-ÏÂÚË͇ ‰Îfl Í·ÒÒ‡ ϒ ‚ÒÂı ‰Â‚¸Â‚, Ú.Â.

ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X, d)ËÁÓÏÂÚ˘ÌÓ ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚Û ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (V, dwpath), „‰Â T = (V, E)ÂÒÚ¸ ‰ÂÂ‚Ó Ë dwpath – ‚Á‚¯ÂÌ̇fl ÏÂÚË͇ ÔÛÚË Ì‡ ÏÌÓÊÂÒÚ‚Â ‚Â¯ËÌ V ‰Â‚‡ íÒ ÔÓÎÓÊËÚÂθÌÓÈ ÙÛÌ͈ËÂÈ ·ÂÌ˚ı ‚ÂÒÓ‚ w. åÂÚË͇ fl‚ÎflÂÚÒfl ‰‚ӂˉÌÓÈÏÂÚËÍÓÈ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ Ó̇ Û‰Ó‚ÎÂÚ‚ÓflÂÚ ÌÂ‡‚ÂÌÒÚ‚Û ˜ÂÚ˚ÂıÚÓ˜ÂÍ.åÂÚË͇ d ̇ ÏÌÓÊÂÒÚ‚Â ï ̇Á˚‚‡ÂÚÒfl ÓÒ··ÎÂÌÌÓÈ ‰‚ÓÔÓ‰Ó·ÌÓÈ ÏÂÚËÍÓÈ,ÂÒÎË ÏÌÓÊÂÒÚ‚Ó ï ÏÓÊÂÚ ·˚Ú¸ ‚ÎÓÊÂÌÓ ‚ ÌÂÍÓÚÓÓ (Ì ӷflÁ‡ÚÂθÌÓ ÔÓÎÓÊËÚÂθÌÓ) ·ÂÌÓ-‚Á‚¯ÂÌÌÓ ‰Â‚Ó, Ú‡ÍÓ ˜ÚÓ ‰Îfl β·˚ı x, y ∈ X ÏÂÚË͇d(x, y) ‡‚̇ ÒÛÏÏ ‚ÂÒÓ‚ ‚ÒÂı ·Â ‚‰Óθ (‰ËÌÒÚ‚ÂÌÌÓ„Ó) ÔÛÚË ÏÂÊ‰Û ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ËÏË ‚Â¯Ë̇ÏË ı Ë Û ‰Â‚‡.

åÂÚË͇ fl‚ÎflÂÚÒfl ÓÒ··ÎÂÌÌÓÈ ‰‚ӂˉÌÓÈ ÏÂÚËÍÓÈ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ Ó̇ Û‰Ó‚ÎÂÚ‚ÓflÂÚ ÓÒ··ÎÂÌÌÓÏÛÌÂ‡‚ÂÌÒÚ‚Û ˜ÂÚ˚Âı ÚÓ˜ÂÍ.åÂÚË͇ ÒÓÔÓÚË‚ÎÂÌËflÑÎfl ÒÎÛ˜‡fl Ò‚flÁÌÓ„Ó „‡Ù‡ G = (V, E) Ò ÔÓÎÓÊËÚÂθÌÓÈ ÙÛÌ͈ËÂÈ ·ÂÌ˚ı‚ÂÒÓ‚ w = (w(e))e ∈ E ‡ÒÒÏÓÚËÏ ‚ÂÒ‡ e·Â Í‡Í ÒÓÔÓÚË‚ÎÂÌËfl. ÇÓÁ¸ÏÂÏ Î˛·˚ ‰‚Â‡Á΢Ì˚ ‚Â¯ËÌ˚ Ë Ë v Ô‰ÔÓÎÓÊËÏ, ˜ÚÓ Í ÌËÏ ÔÓ‰ÒÓ‰ËÌÂ̇ ·‡Ú‡Âfl Ú‡ÍËÏÓ·‡ÁÓÏ, ˜ÚÓ Â‰ËÌˈ‡ ÚÓ͇ Ú˜ÂÚ ËÁ v ‚ u. çÂÓ·ıÓ‰Ëχfl ‰Îfl ˝ÚÓ„Ó ‡ÁÌÓÒÚ¸ (ÔÓÚÂ̈ˇÎÓ‚) ̇ÔflÊÂÌËfl ÓÔ‰ÂÎflÂÚÒfl ÔÓ Á‡ÍÓÌÛ éχ Í‡Í ˝ÙÙÂÍÚË‚ÌÓ ÒÓÔÓÚË‚ÎÂÌËÂÏÂÊ‰Û u Ë v ‚ ˝ÎÂÍÚ˘ÂÒÍÓÈ ˆÂÔË; ÓÌÓ Ì‡Á˚‚‡ÂÚÒfl ÏÂÚËÍÓÈ ÒÓÔÓÚË‚ÎÂÌËfl Ω(u, v)ÏÂÊ‰Û ÌËÏË ([KlRa93]) (ÒÏ. ê‡ÒÒÚÓflÌË Ò‰ÌÂ„Ó ÒÓÔÓÚË‚ÎÂÌËfl, „Î. 14). óËÒÎÓ1ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ ÔÓ‰Ó·ÌÓ ˝ÎÂÍÚ˘ÂÒÍÓÈ ÔÓ‚Ó‰ËÏÓÒÚË Í‡Í ÏÂÛΩ(u, v)1,ÒÓ‰ËÌflÂÏÓÒÚË ÏÂÊ‰Û u Ë v.

àÏÂÌÌÓ, ‚˚ÔÓÎÌflÂÚÒfl ÛÒÎÓ‚Ë Ω(u, v) ≤ minPw(e)e ∈P„‰Â ê – β·ÓÈ (u – v) ÔÛÚ¸, Ò ‡‚ÂÌÒÚ‚ÓÏ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ Ú‡ÍÓÈ ÔÛÚ¸ êfl‚ÎflÂÚÒfl ‰ËÌÒÚ‚ÂÌÌ˚Ï; ÒΉӂ‡ÚÂθÌÓ, ÂÒÎË w(e) = 1 ‰Îfl ‚ÒÂı ·Â, ‡‚ÂÌÒÚ‚ÓÓÁ̇˜‡ÂÚ, ˜ÚÓ G fl‚ÎflÂÚÒfl ‰Â‚ÓÏ. åÂÚË͇ ÒÓÔÓÚË‚ÎÂÌËfl ÔËÏÂÌflÂÚÒfl (‚ ÙËÁËÍÂ,ıËÏËË Ë ÒÂÚflı) ‚ ÒÎÛ˜‡flı, ÍÓ„‰‡ ÌÂÓ·ıÓ‰ËÏÓ Û˜ËÚ˚‚‡Ú¸ ˜ËÒÎÓ ÔÛÚÂÈ ÏÂÊ‰Û Î˛·˚Ïˉ‚ÛÏfl ‚Â¯Ë̇ÏË.ÖÒÎË w(e) = 1 ‰Îfl ‚ÒÂı ·Â, ÚÓΩ(u, v) = ( guu + gvv ) − ( gvv + guu ),∑É·‚‡ 15. ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË „‡ÙÓ‚229„‰Â ((gij)) – Ó·Ó·˘fiÌ̇fl Ó·‡Ú̇fl χÚˈ‡ ‰Îfl χÚˈ˚ ã‡Ô·҇ (lij)) „‡Ù‡ G:Á‰ÂÒ¸ lii ÂÒÚ¸ ÒÚÂÔÂ̸ ‚Â¯ËÌ˚ i, ‡ ‰Îfl i ≠ j ‚Â΢Ë̇ lij = 1, ÂÒÎË ‚Â¯ËÌ˚ i Ë jÒÏÂÊÌ˚Â, Ë lij = 0, Ë̇˜Â. ÇÂÓflÚÌÓÒÚ̇fl ËÌÚÂÔÂÚ‡ˆËfl Ú‡ÍÓ‚‡: Ω(u, v) == (deg(u) Pr(u − v)) −1 , „‰Â deg(u) – ÒÚÂÔÂ̸ ‚Â¯ËÌ˚ u Ë Pr(u – v) – ‚ÂÓflÚÌÓÒÚ¸ ÔËÒÎÛ˜‡ÈÌÓ„ ·ÎÛʉ‡ÌËË, ̇˜Ë̇˛˘ÂÏÒfl Ò u, ÔÓÒÂÚËÚ¸ v ÔÂ‰ ‚ÓÁ‡˘ÂÌËÂÏ ‚ u.ìÒ˜ÂÌ̇fl ÏÂÚË͇ìÒ˜ÂÌÌÓÈ ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â ‚Â¯ËÌ „‡Ù‡, ‡‚̇fl 1‰Îfl β·˚ı ‰‚Ûı ÒÏÂÊÌ˚ı ‚Â¯ËÌ Ë ‡‚̇fl 2 ‰Îfl β·˚ı ‡Á΢Ì˚ı ÌÂÒÏÂÊÌ˚ı‚Â¯ËÌ.

é̇ fl‚ÎflÂÚÒfl 2-ÛÒ˜ÂÌÌÓÈ ÏÂÚËÍÓÈ ‰Îfl ÏÂÚËÍË ÔÛÚË „‡Ù‡. é̇ fl‚ÎflÂÚÒfl(1,2)-Ç-ÏÂÚËÍÓÈ, ÂÒÎË ÒÚÂÔÂ̸ β·ÓÈ ‚Â¯ËÌ˚ Ì ·Óθ¯Â ˜ÂÏ Ç.åÌÓ„ÓÍ‡ÚÌÓ ‚˚‚ÂÂÌÌÓ ‡ÒÒÚÓflÌËÂåÌÓ„ÓÍ‡ÚÌÓ ‚˚‚ÂÂÌÌ˚Ï ‡ÒÒÚÓflÌËÂÏ Ì‡Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ̇ ÏÌÓÊÂÒڂ‚Â¯ËÌ V m-Ò‚flÁÌÓ„Ó ‚Á‚¯ÂÌÌÓ„Ó „‡Ù‡G = (V, E) , ÓÔ‰ÂÎÂÌÌÓ ‰Îfl β·˚ı u, v ∈∈ V Í‡Í ÏËÌËχθ̇fl ‚Á‚¯ÂÌ̇fl ÒÛÏχ ‰ÎËÌ m ÌÂÔÂÂÒÂ͇˛˘ËıÒfl (u – v) ÔÛÚÂÈ.éÌÓ fl‚ÎflÂÚÒfl Ó·Ó·˘ÂÌËÂÏ ÔÓÌflÚËfl ‡ÒÒÚÓflÌËfl ̇ ÒÎÛ˜‡È, ÍÓ„‰‡ Ú·ÛÂÚÒfl ̇ÈÚËÌÂÒÍÓθÍÓ ÌÂÔÂÂÒÂ͇˛˘ËıÒfl ÔÛÚÂÈ ÏÂÊ‰Û ‰‚ÛÏfl ÚӘ͇ÏË, ̇ÔËÏÂ, ‚ ÒËÒÚÂχıÒ‚flÁË, „‰Â m – 1 ËÁ (u – v) ÔÛÚÂÈ ËÒÔÓθÁÛ˛ÚÒfl ‰Îfl ÍÓ‰ËÓ‚‡ÌËfl ÒÓÓ·˘ÂÌËfl,ÔÂ‰‡‚‡ÂÏÓ„Ó ÔÓ ÓÒÚ‡‚¯ÂÏÛÒfl (u – v) ÔÛÚË (ÒÏ. [McCa97]).É‡Ù G ̇Á˚‚‡ÂÚÒfl m-Ò‚flÁÌ˚Ï, ÂÒÎË Ì ÒÛ˘ÂÒÚ‚ÛÂÚ ÏÌÓÊÂÒÚ‚‡ ËÁ m – 1 ·‡, Û‰‡ÎÂÌË ÍÓÚÓ˚ı Ô‚‡ÚËÚ „‡Ù ‚ ÌÂÒ‚flÁÌ˚È.

ë‚flÁÌ˚È „‡Ù fl‚ÎflÂÚÒfl1-Ò‚flÁÌ˚Ï.ê‡ÁÂÁ – ˝ÚÓ ‡Á·ËÂÌË ÏÌÓÊÂÒÚ‚‡ ̇ ‰‚ ˜‡ÒÚË. ÖÒÎË Á‡‰‡ÌÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó SÏÌÓÊÂÒÚ‚‡ Vn = {1,…, n}, ÚÓ Á‡‰‡ÌÓ ‡Á·ËÂÌË {S, Vn\S} ÏÌÓÊÂÒÚ‚‡ Vn . èÓÎÛÏÂÚË͇ ‡ÁÂÁ‡ ̇ Vn , ÓÔ‰ÂÎflÂχfl Ú‡ÍËÏ ‡Á·ËÂÌËÂÏ, ÏÓÊÂÚ ‡ÒÒχÚË‚‡Ú¸ÒflÍ‡Í ÒÔˆˇθ̇fl ÔÓÎÛÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â ‚Â¯ËÌ ÔÓÎÌÓ„Ó ‰‚Û‰ÓθÌÓ„Ó „‡Ù‡K S, Vn \ S , „‰Â ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‚Â¯Ë̇ÏË ‡‚ÌÓ 1, ÂÒÎË ÓÌË ÔË̇‰ÎÂÊ‡Ú ‡ÁÌ˚Ϙ‡ÒÚflÏ ‰‡ÌÌÓ„Ó „‡Ù‡, Ë ‡‚ÌÓ 0, Ë̇˜Â.èÓÎÛÏÂÚË͇ ‡ÁÂÁ‡ÖÒÎË Á‡‰‡ÌÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó S ÏÌÓÊÂÒÚ‚‡ Vn = {1,…, n}, ÚÓ ÔÓÎÛÏÂÚË͇ ‡ÁÂÁ‡(ËÎË ÔÓÎÛÏÂÚË͇ ‡Á‰‚ÓÂÌËfl) δS fl‚ÎflÂÚÒfl ÔÓÎÛÏÂÚËÍa ̇ Vn , ÓÔ‰ÂÎÂÌ̇fl ͇Í1, ÂÒÎË i ≠ j, | S {i, j} |= 1,δ S (i, j ) = 0, Ë̇˜Â.é·˚˜ÌÓ Ó̇ ‡ÒÒχÚË‚‡ÂÚÒfl Í‡Í ‚ÂÍÚÓ ‚ | En | , E(n) = {{i, j} : 1 ≤ i < j ≤ n}.äÛ„Ó‚ÓÈ ‡ÁÂÁ V n Á‡‰‡ÂÚÒfl ÔÓ‰ÏÌÓÊÂÒÚ‚ÓÏ S[k+1, l] = {k + 1,…, l} (mod n) ⊂ Vn :ÂÒÎË ‡ÒÒχÚË‚‡Ú¸ ÚÓ˜ÍË Í‡Í ÛÔÓfl‰Ó˜ÂÌÌ˚ ‚‰Óθ ÓÍÛÊÌÓÒÚË ‚ ÚÓÏ ÊÂÍÛ„Ó‚ÓÏ ÔÓfl‰ÍÂ, ÚÓ S[k+1, l] ÂÒÚ¸ ÏÌÓÊÂÒÚ‚Ó ÔÓÒΉӂ‡ÚÂθÌ˚ı ‚Â¯ËÌ ÓÚ k + 1 ‰Ó l.ÑÎfl ÍÛ„Ó‚Ó„Ó ‡ÁÂÁ‡ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘‡fl ÔÓÎÛÏÂÚË͇ ‡ÁÂÁ‡ ̇Á˚‚‡ÂÚÒflÔÓÎÛÏÂÚËÍÓÈ ÍÛ„Ó‚Ó„Ó ‡ÁÂÁ‡.èÓÎÛÏÂÚËÍÓÈ ˜ÂÚÌÓ„Ó ‡ÁÂÁ‡ ̇Á˚‚‡ÂÚÒfl ÔÓÎÛÏÂÚË͇ δS ̇ Vn Ò ˜ÂÚÌ˚Ï | S |.èÓÎÛÏÂÚËÍÓÈ Ì˜ÂÚÌÓ„Ó ‡ÁÂÁ‡ ̇Á˚‚‡ÂÚÒfl ÔÓÎÛÏÂÚË͇ δS ̇ V n Ò Ì˜ÂÚÌ˚Ï| S |.

Характеристики

Тип файла
PDF-файл
Размер
3,34 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6458
Авторов
на СтудИзбе
304
Средний доход
с одного платного файла
Обучение Подробнее