Белов- БЖД (1183106), страница 43
Текст из файла (страница 43)
Пусть плотность людей на единицу площади рабочей зоны определена как функция р (г). Тогда общий риск применительно к отдельному источнику
При наличии п источников опасности для нахождения индивидуального риска можно использовать принцип суперпозиции
где Ri,(r) – индивидуальный риск при i-м источнике опасности.
Один и тот же объект может быть источником разных опасностей. Например, при транспортировании топлива между пунктами А и В можно выделить поле опасности, связанное с токсичностью топлива, и поле опасности, связанное с горючестью топлива, которые в общем случае различны.
Рис. 4.29. Зависимость допустимого риска от ожидаемого числа летальных исходов: 1 – наинизшее значение естественной смертности | Рис. 4.30. Зависимость риска от расходов на защиту |
Далее проверяют выполнение неравенства (4.50). В дополнение к этому неравенству, которое ограничивает индивидуальный риск, следует удовлетворить также условию, вовлекающему в рассмотрение коллективный риск:
При принятии решений следует иметь в виду, что для ряда источников невозможно достичь уровня «нулевой» опасности. На рис. 4.30 кривая 1 соответствует случаю, когда можно достичь абсолютной безопасности, или нулевой опасности. В этом случае при расходах на защиту при необходимом конечном значении Х=Xо риск R становится равным нулю. Кривая 2 соответствует случаю, когда достичь абсолютной безопасности принципиально невозможно. Такое поведение эффективности затрат на защиту характерно, например для радиационно опасных производств, транспорта, промышленных предприятий. Если придерживаться принципа абсолютной безопасности, то необходимо применить все меры защиты, которые практически можно осуществить. Однако при этом помимо прямого риска Rnp, создаваемого данной технологией, и на уменьшение которого направлены усилия (меры безопасности), существует еще и косвенный риск Rкс. Он обусловлен, например строительными работами, изготовлением оборудования и материалов для защитных сооружений, их эксплуатацией и т. д. С ростом расходов X на безопасность риск Rпр уменьшается, а риск Rкс растет. Уменьшается также эффективность затрат на защиту. Начиная с некоторого уровня этих расходов, при дальнейшем росте Х будет происходить возрастание полного риска Rn = Rnp + Rкс. Поэтому при наличии источников, которые не позволяют достичь уровня нулевой опасности, следует принимать вариант решения с оптимизацией риска.
Для выполнения условий безопасности может потребоваться внесение изменений в следующие компоненты, управляющие риском: конструкторские решения; аварийные методики; учебные, тренировочные программы, программы по переподготовке; руководство по эксплуатации; нормативные документы; программы по безопасности.
Анализ риска, обусловленного наличием источника вредного действия, состоит из этапа оценки риска, сопровождаемого исследованиями, и этапа управления риском (рис. 4.31). На этапе оценки устанавливают, какие последствия вызывают разные дозы и в разных условиях в данном коллективе. На этапе управления риском анализируют разные альтернативы и выбирают наиболее подходящие управляющие воздействия. С целью принятия окончательного решения результаты оценки риска рассматривают с учетом инженерных, экономических и политических аспектов.
Рис. 4.31. Схема анализа риска, обусловленного источником, воздействующим на здоровье
Стандартные показатели несчастных случаев. Показатели несчастных случаев являются некоторой мерой опасности, позволяющей сопоставлять между собой предприятия, отрасли, профессии, возрастные группы и т. д. Они учитывают объем выполненной работы, ее минимальную длительность, при которой они являются достоверными, требуют применения единых методов учета данных и разрешают проводить сравнение лишь при определенных условиях (например, по профессиям). К таким показателям относят коэффициенты и показатели частоты и тяжести несчастных случаев.
Коэффициент частоты несчастных случаев есть отношение числа наступивших несчастных случаев N к реперному числу несчастных случаев N*, определенному за тот же период времени:
K4=N/N*. (4.54)
Реперное число
где αt = 10-6 нс/ч и αм = 10-3 нс/чел. можно трактовать как реперные значения соответственно скорости и плотности наступления несчастных случаев; Т–число часов, отработанных за рассматриваемый период времени всеми рабочими, которые подвергались воздействию опасности; М–среднее число рабочих, подверженных опасности.
В нашей стране принято определять реперное число по формуле N* = αмM, в западных развитых странах N* = αtТ, подсчитанные таким образом коэффициенты К4 имеют различные значения; расчет реперного числа по формуле N = αТТ позволяет более полно учесть объем выполненной работы.
Если устанавливается годовое значение К4, то
T=MXY-Z,
где М–численность работающих; X, Y и Z–соответственно длительность рабочего дня, число отработанных в году дней и потери рабочего времени вследствие отпусков, прогулов, болезни, несчастных случаев и т д.
Например, если на предприятии в течение года (допустим, в году 300 рабочих дней) работало 950 человек (рабочий день ранен 8 ч), за это время наступило 100 несчастных случаев и было потеряно по разным причинам 30 000 рабочих дней, то -Т = 950∙300∙8–30000∙8 = 2 040 000 ч, N. =10-6·2 040 000 == 2,04 нc, К4 = 100/2,04 = 49,02.
Показатель тяжести несчастных случаев (коэффициент нетрудоспособности)
Kн=Д/д*, (4.55)
где Д–число всех дней нетрудоспособности; Д*=βтТ–реперное число нетрудоспособных дней; Ву= 10-3 дн/ч.
Допустим, что при условиях, изложенных в предыдущем примере, 100 несчастных случаев привели к потере 3000 рабочих дней. Тогда, реперное число Д* = 10-3(950·300x х8–30 000-8) == 2040 дней, Кн = 3000/2040 = 1,47
Коэффициент тяжести несчастных случаев определяется как число всех дней нетрудоспособности, приходящееся на один несчастный случай:
Кт=Д/Т
(4.56)
При расчетах характеристик несчастных случаев (4.54)...(4.56) возникает вопрос: как быть, если среди несчастных случаев были такие, которые привели к летальному исходу или полной потере трудоспособности? Ответ на этот вопрос пытаются дать путем установления эквивалента, который бы приводил летальный исход к числу нетрудоспособных дней. Ориентировочно и неофициально полагают, что один летальный исход может быть приравнен к 6000–7500 дням потери работоспособности Так, если в предыдущем примере к 100 несчастным случаям добавим один летальный исход, получим Кн=е (6000 + 3000)/2040 =4,41, т.е. показатель тяжести увеличится в 3 раза, а коэффициент частоты незначительно (станет равным 50,25). Однако в настоящее время показатели несчастных случаев обычно рассчитывают отдельно для летальных и нелетальных исходов.
Коэффициент частоты несчастных случаев с летальным исходом [ли/чел∙4)]:
Кл=Nл/(МТ)
(4 57)
где Nл –число летальных исходов, обычно полагают МТ= 108 чел *ч, что соответствует расчетному времени, когда 1000 человек работают по 40 ч в неделю в течение 50 недель в году и в течение 50 лет. Значения коэффициента Кл приведены ниже.
Кл,ли/(чел*4)
Горные работы 30·10-8
Транспорт 30·10-8
Строительство 20·10-8
Добыча нерудных полезных ископаемых 10·10-8
Эксплуатация газопроводного оборудования и гидротехнических
сооружений 6·10-8
Металлургическая промышленность 6·10-8
Деревообделочные работы 6·10-8
Пищевая промышленность 6·10-8
Цсллюлозно-бумажная и полиграфическая промышленность 5·10-8
Электротехника, точная механика, оптика 4·10-8
Работы, связанные с химическими веществами 4·10-8
Торговля, финансы, страхование, коммунальные услуги 4·10-8
Текстильная и кожевенно-обувная промышленность 3·10-8
Здравоохранение___________________________ 2·10-8
Среднее значение для 20,2 млн застрахованных 7·10-8
4.4. АНАЛИЗ ПОСЛЕДСТВИЙ ЧЕПЕ
Оценка опасности становится полной лишь тогда, когда последствия потенциального чепе ясно представляются. Прежде чем планировать предупредительные мероприятия, необходимо знать, какое потенциальное повреждающее действие окажет данное чепе на персонал, население, материальные ценности и окружающую среду. Поэтому анализ последствий чепе (АПЧ) может включать следующее:
– описание потенциальных чепе;
– оценку их вероятностей;
– количественную оценку возможных последствий, например, проливов и выбросов, обладающих повреждающими свойствами (токсичностью, взрываемостью и т д);
– расчет рассеивания выбросов и испарение проливов;
– оценку других повреждающих факторов (радиации, ударной волны, излучений и т. д);
– суммарную оценку ущерба.
Если первые два пункта могут быть выполнены, исходя из результатов анализа опасностей, выполненного ранее описанными методами, то для выполнения других пунктов нужно использовать специальные модели.
Большой класс задач связан с выбросом в атмосферу радиоактивных и других химических веществ. Чтобы оценить последствия такой аварии, необходимо уметь рассчитывать поля концентраций. Если примесь выбрасывается в поток, движущийся с постоянной средней скоростью U вдоль оси ОХ1 декартовой системы координат, то теоретико-вероятностное среднее значение концентрации с в точке Х в момент времени t
где S(x , t') – производительность источника в точке х' в момент t’ (единиц примеси на единицу объема за единицу времени), σi = σi(τ) – стандартные отклонения (i = 1, 2, 3, τ= t–t'), |σ| = σ1σ2σ3
В табл 4 18 приведены некоторые решения этого уравнения. В расчетные соотношения входят стандартные отклонения σδi, которые необходимо предварительно определить Для стационарных источников значения σ2, σ3 представляют собой характеристики горизонтального (перпендикулярно направлению движения) и вертикального расширения струи. Они задаются в зависимости от расстояния от источника в направлении движения ветра и зависят от устойчивости атмосферы, т е ее турбулентности, которая определяет поле ветра, переносящее и рассеивающее примесь Категории устойчивости даны в табл. 4.19. Значения отклонений приведены на рис. 4.32. для периодов времени порядка 10 мин вблизи поверхности Земли (обычно на высоте 10 м). Скорость ветра U высоте хз приближенно можно определить по формуле U=Uh(x3/h)α где Uh –скорость ветра на высоте h; показатель α, зависящий от атмосферных условий и шероховатости поверхности, можно принять равным 0,16; 0,28 и 0,4 соответственно для территории открытого пространства, при наличии пригорода и в условиях города.
Таблица 4.18. Расчетные соотношения для полей концентраций от некоторых источников