Диссертация (1150860), страница 7
Текст из файла (страница 7)
Îòñþäà ìû ïîëó÷àåì,3∑s=13∑= δAB(k1A + k10 )24k1A k10∗βsA (k̂) βsB(k̂) = δAB(k1A − k10 )24k1A k10∗αsA (k̂) αsB(k̂)s=1Âû÷èòàÿ ïîëó÷åííûå óðàâíåíèÿ äðóã èç äðóãà, ìû èìååì,3 [∑s=1∗αsA (k̂) αsB(k̂)−∗βsA (k̂) βsB(k̂)]= δABA, B = L, ±(2.64)45ïðàêòè÷åñêè àíàëîãè÷íî ïîëó÷àþòñÿ ñëåäóþùèå, åñòåñòâåííûå äëÿ ïðåîáðàçîâàíèÿ Áîãîëþáîâà, òîæäåñòâà,3 [∑∗αsA (k̂) βsB(k̂)−]∗βsA (k̂) αsB(k̂)=0A, B = L, ±(2.65)αsA (k̂) βsB (k̂) − βsB (k̂) αsA (k̂) = 0A, B = L, ±(2.66)s=13 [∑]s=1Âîçâðàùàÿñü ê ãðàíè÷íûì óñëîâèÿì (2.54) è ïðèíèìàÿ âî âíèìàíèå ïðåîáðàçîâàíèÿ Áîãîëþáîâà (2.55), ìîæíî íàïèñàòü ñîîòíîøåíèÿ ìåæäó îïåðàòîðàìè,∑ [a k̂, r =α rA (k̂) c k̂,A −β ∗rA (k̂) c †k̂,A](2.67)A=±,Lc k̂,A =3 [∑∗αAr(k̂) a k̂, r+]∗βAr(k̂) a †k̂, r(2.68)r=1Èñõîäÿ èç êàíîíè÷åñêèõ êîììóòàöèîííûõ ñîîòíîøåíèé ïèøåì,[]= δ(k̂ − p̂) δrs]∑ [††∗∗α rA (k̂) c k̂,A − β rA (k̂) c k̂,A , α sB (p̂) c p̂,B − β sB (p̂) c p̂,Ba k̂, r ,=a†p̂, sA,B=±,L∑ [=α rA (k̂) α∗sA (p̂)−β rA (k̂) β ∗sA (p̂)]δ(k̂ − p̂)A=±,Lè, ñîîòâåòñòâåííî,∑ [α rA (k̂) α∗sA (k̂)−β rA (k̂) β ∗sA (k̂)]= δrs(2.69)A=±,LÊîììóòèðóþùèå âåëè÷èíû,][a k̂, r , a p̂, s[=a†k̂, r,a†p̂, s]= 0 ïîçâîëÿþò ïîëó÷èòü ñëåäóþùèå ñîîòíîøåíèÿ,∑ [α rA (k̂) β ∗sA (k̂)−β rA (k̂) α∗sA (k̂)]=0(2.70)α rA (k̂) β sA (k̂) − β rA (k̂) α sA (k̂) = 0(2.71)A=±,L∑ [A=±,L]46Èòàê, ìû èìååì äâà ðàçëè÷íûõ ôîêîâñêèõ âàêóóìà,a k̂, r |0⟩ = 0ïðè÷åìc k̂,A | 0 ⟩ =c k̂,A | Ω ⟩ = 03∑∗βAr(k̂) a †k̂, r | 0 ⟩r=1è, ñëåäîâàòåëüíî,⟨0 |c †p̂,B3∑c k̂,A | 0 ⟩ =∗⟨ 0 | a p̂,s a †k̂, r | 0 ⟩ βBs (p̂) βAr(k̂)r,s=1= δ(k̂ − p̂)3∑∗βBr (k̂) βAr(k̂)= δ(k̂ − p̂) δABr=1 ñâîþ î÷åðåäü,∑a k̂, r | Ω ⟩ = −(k1A − k10 )24k1A k10†β ∗rA (k̂) ck̂,A| Ω⟩(2.72)A=L,±îòêóäà ìîæíî ïîëó÷èòü,⟨ Ω | a †p̂,s a k̂,r | Ω ⟩ =∑∗⟨ Ω | c p̂,A c †k̂, B | Ω ⟩ βBs (p̂) βAr(k̂)A,B=L,±= δ(k̂ − p̂)∑∗βAs (k̂) βAr(k̂)A=L,±Áîëåå òîãî, ìîæíî âû÷èñëèòü⟨ 0 | a p̂,s c k̂,A | 0 ⟩ = ⟨ 0 | a p̂,s3 [∑∗αAr(k̂) a k̂, r+∗βAr(k̂) a †k̂, r]| 0⟩r=1=3∑∗∗βAr(k̂) ⟨ 0 | a p̂,s a †k̂, r | 0 ⟩ = δ(k̂ − p̂) βAs(k̂)r=1⟨0 |a p̂,s c †k̂,A| 0 ⟩ = ⟨ 0 | a p̂,s3 [∑αAr (k̂) a †k̂, r]+ βAr (k̂) a k̂, r | 0 ⟩r=1=3∑αAr (k̂) ⟨ 0 | a p̂,s a †k̂, r | 0 ⟩ = δ(k̂ − p̂) αAs (k̂)r=1Ïîëó÷åííàÿ âåëè÷èíà, αAs (k̂), ìîæåò áûòü èíòåðïðåòèðîâàíà êàê àìïëèòóäàâåðîÿòíîñòè òîãî, ÷òî ÷àñòèöà ñ ìàññîé m, ÷àñòîòîé ω , âîëíîâûì âåêòîðîì47(k1A , k2 , k3 ) è âåêòîðîì êèðàëüíîé ïîëÿðèçàöèè εAµ (k̂) ïåðåõîäèò èç ëåâîãî ïîëóïðîñòðàíñòâà â ïðàâîå ÷åðåç ãèïåðïîâåðõíîñòü x1 = 0 è ïðåâðàùàåòñÿ â ÷àñòèöóÏðîêà-Øòþêåëáåðãà ñ ìàññîé m, ÷àñòîòîé ω , âîëíîâûì âåêòîðîì (k10 , k2 , k3 ) èâåêòîðîì ïîëÿðèçàöèè esµ (k̂).
Ýôôåêò ýòîãî ïåðåõîäà, â ÷àñòíîñòè, çàêëþ÷àåòñÿâ òîì, ÷òî ïåðâàÿ êîìïîíåíòà âîëíîâîãî âåêòîðà ìàññèâíîé ÷àñòèöû ìåíÿåòñÿñ k1± íà k10 , ëèáî, â ñëó÷àå ïðîäîëüíîé ïîëÿðèçàöèè, âîëíîâîé âåêòîð îñòàåòñÿíåèçìåííûì.2.2.1. Âàêóóì êàê ñæàòîå ñîñòîÿíèåÈòàê, ìû îáíàðóæèëè, ÷òî â íàøåé ìîäåëè ñóùåñòâóþò äâà ðàçëè÷íûõôîêîâñêèõ âàêóóìà: |0⟩, |Ω ⟩. Ëîãè÷íî ïðåäïîëîæèòü, ÷òî ýòè âàêóóìû äîëæíûáûòü ñâÿçàíû ìåæäó ñîáîé è ïîëó÷àòüñÿ äðóã èç äðóãà ïîä äåéñòâèåì íåêîòîðîéêîìáèíàöèè îïåðàòîðîâ ðîæäåíèÿ,(c †k̂,+ )p (c †k̂,− )m (c †k̂,L )l√|0⟩k̂ =fpml| Ω ⟩k̂p!m!l!p,m,l=0∞∑(2.73)Çäåñü èìååòñÿ â âèäó, ÷òî| Ω⟩ =∏(| Ω ⟩k̂ )|0⟩ =k̂∏(|0⟩k̂ ),k̂ïðè÷åì ïðîèçâåäåíèå îñóùåñòâëÿåòñÿ ïî âñåì âîçìîæíûì çíà÷åíèÿì k̂ .  äàëüíåéøåì ìû ïåðåéäåì ê íåïðåðûâíîìó ïðåäåëó.Äëÿ òîãî, ÷òîáû íàéòè êîýôôèöèåíòû fkml , ïîäñòàâèì ñîîòíîøåíèå (2.67)â ðàâåíñòâî,a k̂, r |0⟩k̂ = 0.(2.74)Ïðè ëþáîé êîìáèíàöèè îïåðàòîðîâ ðîæäåíèÿ ìû äîëæíû ïîëó÷èòü çàíóëÿþùèéñÿ êîýôôèöèåíò. Óäîâëåòâîðÿÿ ýòîìó óñëîâèþ ìû äëÿ ëþáûõ p, m, l ≥ 1,ïîëó÷àåì ñëåäóþùåå ðàâåíñòâî,αr+ (k̂)√√√p + 1f(p+1)ml + αr− (k̂) m + 1fp(m+1)l + αrL (k̂) l + 1fpm(l+1)√√√∗∗∗−βr+(k̂) pf(p−1)ml − βr−(k̂) mfp(m−1)l − βrL(k̂) lfpm(l−1) = 0 (2.75)48Ìû ïîëó÷èëè áåñêîíå÷íîå êîëè÷åñòâî óðàâíåíèé.
Ðåøåíèåì ýòîé ñèñòåìû áóäóòñîîòíîøåíèÿ ìåæäó êîýôôèöèåíòàìè f ñ ðàçëè÷íûìè èíäåêñàìè,√f(p+2)ml =√∗(k̂)p + 1 βr+fpmlp + 2 αr+ (k̂)∗(k̂)m + 1 βr−fp(m+2)l =fpmlm + 2 αr− (k̂)√∗l + 1 βrL(k̂)fpm(l+2) =fpmll + 2 αrL (k̂)(2.76)Òåïåðü ðàññìîòðèì òå óðàâíåíèÿ, ãäå p = 0, m, l ≥ 1,√√αr+ (k̂)f1ml + αr− (k̂) m + 1f0(m+1)l + αrL (k̂) l + 1fpm(l+1)√√∗∗−βr−(k̂) mf0(m−1)l − βrL(k̂) lf0m(l−1) = 0(2.77)Èñïîëüçóÿ ðàâåíñòâà (2.76), ëåãêî óâèäåòü, ÷òî ÷åòûðå ïîñëåäíèõ ñëàãàåìûõñîêðàùàþò äðóã äðóãà, è ìû ïîëó÷àåì f1ml = 0 äëÿ ëþáûõ m, l ≥ 1. Òàêèå æåóñëîâèÿ ìîæíî âûïèñàòü äëÿ îñòàëüíûõ èíäåêñîâ.  èòîãå, ìû ïîëó÷èì,f1ml = 0fp1l = 0fpm1 = 0ïðèp, m, l ≥ 0.(2.78)Òàêèì îáðàçîì, ïîëó÷àåòñÿ, ÷òî òîëüêî ÷åòíûå êîýôôèöèåíòû íå çàíóëÿþòñÿ,√f(2p)(2m)(2l) =∗∗∗(k̂) p βr−(k̂) m βrL(2p − 1)!!(2m − 1)!!(2l − 1)!! βr+(k̂) l()() () f000(2p)!!(2m)!!(2l)!!αr+ (k̂) αr− (k̂)αrL (k̂)(2.79)×òîáû íå çàãðîìîæäàòü ñëåäóþùèå äàëåå ôîðìóëû, âûáåðåì êîýôôèöèåíòf000 = 1, â äàëüíåéøåì ìû íàéäåì ïðàâèëüíóþ íîðìèðîâêó.
Ñîîòíîøåíèå ìåæäó âàêóóìàìè â ýòîì ñëó÷àå ïðèìåò ñëåäóþùèé âèä,∞∑|0⟩k̂=p,m,l=0∗∗β ∗ (k̂) p βr−(k̂) m βrL1(k̂) l † 2p † 2m † 2l( r+) () () (c k̂,+ ) (c k̂,− ) (c k̂,L ) | Ω ⟩k̂(2p)!!(2m)!!(2l)!! αr+ (k̂) αr− (k̂)αrL (k̂)(2.80)Ëåãêî óâèäåòü, ÷òî íàïèñàííàÿ âûøå ñóììà åñòü íå ÷òî èíîå, êàê ðàçëîæåíèåýêñïîíåíòû â ðÿä,[|0⟩k̂ = exp∗βr+(k̂)2αr+ (k̂)(c †k̂,+ )2 +∗βr−(k̂)2αr− (k̂)(c †k̂,− )2 +∗βrL(k̂)2αrL (k̂)](c †k̂,L )2 | Ω ⟩k̂ (2.81)Åñòåñòâåííî, ìû ìîæåì íàïèñàòü è îáðàòíîå ðàâåíñòâî,(a †k̂, 1 )i (a †k̂, 2 )j (a †k̂, 3 )k√| Ω ⟩k̂ =gijk|0⟩k̂i!j!k!i,j,k=0∞∑(2.82)49Èñïîëüçóÿ ñîîòíîøåíèÿ (2.67), (2.68), ëåãêî óâèäåòü, ÷òî âûðàæåíèÿ äëÿ gijk∗∗ìîæíî ïîëó÷èòü ïóòåì çàìåíû α rA (k̂) → αAr(k̂); (−β ∗rA (k̂)) → βAr(k̂); c k̂,A →a k̂, r .
Ïîýòîìó, àíàëîãè÷íî ïðåäûäóùåìó ñëó÷àþ, ïîëó÷àåì,[| Ω ⟩k̂ = exp∗−βA1(k̂) † 2(a k̂, 1 )∗ (k̂)2αA1+∗−βA2(k̂) † 2(a k̂, 2 )∗ (k̂)2αA2+∗−βA3(k̂) † 2(a k̂, 3 )∗ (k̂)2αA3]|0⟩k̂ (2.83)Òåïåðü íàéäåì ñîîòíîøåíèÿ ìåæäó | Ω ⟩ è |0⟩. Ìû çíàåì, ÷òî)(∗∗∗∏∏β (k̂) † 2β (k̂) † 2β (k̂) † 2|0⟩ =(|0⟩k̂ ) =exp[ r+(c k̂,+ ) + r−(c k̂,− ) + rL(c ) ] | Ω ⟩k̂ =2αr+ (k̂)2αr− (k̂)2αrL (k̂) k̂,Lk̂k̂()∗∗∑ β (k̂) †)β (k̂) † 2β ∗ (k̂) † 2 ∏ (r+| Ω ⟩k̂= exp (c k̂,+ )2 + r−(c k̂,− ) + rL(c k̂,L )2αr+ (k̂)2αr− (k̂)2αrL (k̂)k̂k̂Ïåðåõîäÿ ê ïðåäåëó íåïðåðûâíîãî ñïåêòðà k̂ , à òàêæå ïðèíèìàÿ âî âíèìàíèåôèçè÷åñêèå ïðåäåëû èíòåãðèðîâàíèÿ äëÿ ðàçëè÷íûõ ïîëÿðèçàöèé, íàõîäèì, ∫∑ β ∗ (k̂) †2rA|0⟩ = exp(c k̂,A )2 θ(k1A(k̂)) dk̂ | Ω ⟩A=±,L 2αrA (k̂)(2.84)Íàïîìíèì, ÷òî ýòîò ðåçóëüòàò áûë ïîëó÷åí äëÿ âûáðàííîãî êîýôôèöèåíòàf000 = 1. Òåïåðü íóæíî íàéòè ïðàâèëüíóþ íîðìèðîâêó.
Äëÿ ýòîãî çàïèøåì,) ∫ (∑∗βrA(k̂)†22A=±,L 2αrA (k̂) (c k̂,A ) θ(k1A (k̂)) dk̂ |Ω⟩|0⟩ = exp(2.85)Dãäå D - íîðìèðîâî÷íûé ìíîæèòåëü. Ëåãêî óâèäåòü, ÷òî D è f000 ñâÿçàíû ïðîñòûì ñîîòíîøåíèåì, f000 =1D.Ïðè ïðàâèëüíîé íîðìèðîâêå, ìû äîëæíû èìåòü,⟨0|0⟩ = 1(2.86) òî æå âðåìÿ, ìû ìîæåì ïåðåïèñàòü (2.86) â òåðìèíàõ äðóãîãî ôîêîâñêîãî50âàêóóìà, ∫(⟨0|0⟩ = ⟨Ω | exp ∫(exp ∑∑βrA (k̂)22A=±,L 2α∗ (k̂) (c k̂,A ) θ(k1A (k̂))rA) dk̂D∗ (k̂)βrA†22A=±,L 2α (k̂) (c k̂,A ) θ(k1A (k̂))rAD×)dk̂(2.87) | Ω⟩Ðàçëîæèì ýêñïîíåíòû â ðÿä.
Ñðàçó ñëåäóåò îáðàòèòü âíèìàíèå íà òî, ÷òî íàñ áóäóò èíòåðåñîâàòü òîëüêî ìîíîìû ñ îäèíàêîâûì êîëè÷åñòâîì îïåðàòîðîâ ðîæäåíèÿ è óíè÷òîæåíèÿ. Ëèøü ýòè ÷ëåíû áóäóò äàâàòü íåíóëåâîé âêëàä, ïîñêîëüêóíàøå âûðàæåíèå ñòîèò â âàêóóìíûõ îáêëàäêàõ. Çíà÷èò íàì ñëåäóåò ðàññìîòðåòü òîëüêî ÷ëåíû âèäà,1(n!)2(∫βrA (k̂)2(c k̂,A )2 θ(k1A(k̂))dk̂)n (∫∗βrA(k̂))n2(c †k̂,A )2 θ(k1A(k̂))dk̂=∗ (k̂)2αrA2αrA (k̂)∫∫1=. . . dk̂1 θk1 . . .
dk̂n θkn dq̂1 θq1 . . . dq̂n θqn ×(2.88)(n!)2n∗∏βrA (k̂i )βrA(q̂i )× [](c k̂1 ,A )2 . . . (c k̂n ,A )2 (c †q̂1 ,A )2 . . . (c †q̂n ,A )2∗i=1 4αrA (k̂i )αrA (q̂i )( 2)Çäåñü èñïîëüçóþòñÿ êðàòêèå îáîçíà÷åíèÿ θki ≡ θ k1A(k̂i ) , i = 1..n. Èç êàíîíè÷åñêèõ êîììóòàöèîííûõ ñîîòíîøåíèé ïîëó÷àåì ñëåäóþùèå,[(c k̂,A )2 , (c †q̂,A )2 ] = 2δ(k̂ − q̂){c †q̂,A , c k̂,A }(2.89)Òåïåðü íåìíîãî èçìåíèì âòîðîé ÷ëåí ïîä êîììóòàòîðîì â ïðåäûäóùåì ðàâåíñòâå,[(c k̂,A )2 , c †q̂,A c †q̂+ε̂,A ] =(2.90)= 2δ(k̂ − q̂ − ε̂)c †q̂,A c k̂,A + 2δ(k̂ − q̂)c †q̂+ε̂,A c k̂,A + 2δ(k̂ − q̂ − ε̂)δ(k̂ − q̂)Åñëè ýòî ýòî âûðàæåíèå áóäåò ñòîÿòü ïîä èíòåãðàëîì ïî q̂ è ïî k̂ , òîãäà ïîñëåäíèé ÷ëåí ïðè èíòåãðèðîâàíèè çàíóëèòñÿ. ×òîáû âåðíóòüñÿ îáðàòíî ê èñõîäíûìîïåðàòîðàì, ñëåäóåò ïåðåéòè ê ïðåäåëó ε → 0.
Òåïåðü ìû ìîæåì âû÷èñëÿòü íàøè ìàòðè÷íûå ýëåìåíòû, èñïîëüçóÿ ñëåäóþùèå êîììóòàöèîííûå ñîîòíîøåíèÿ,[(c k̂,A )2 , (c †q̂,A )2 ] = 4δ(k̂ − q̂)c †q̂,A c k̂,A(2.91)51Èòàê, ñ ïîìîùüþ ïðåäûäóùåãî âûðàæåíèÿ, âîçüìåì èíòåãðàë â îáêëàäêàõ,1⟨Ω |(n!)2∫∫. . . dk̂1 θk1 . . . dk̂n θkn dq̂1 θq1 . . . dq̂n θqnn∏i=1[∗(q̂i )βrA (k̂i )βrA∗ (k̂ )α (q̂ )4αrAirA i]××(c k̂1 ,A )2 . . .
(c k̂n ,A )2 (c †q̂1 ,A )2 . . . (c †q̂n ,A )2 | Ω ⟩ =][∫∫n∗∏4n(n − 1)βrA (k̂i )βrA(q̂i )|k̂1 =q̂1 =q̂2 ×⟨Ω |. . . dk̂2 θk2 . . . dk̂n θkn dq̂2 θq2 . . . dq̂n θqn∗(n!)2i=1 4αrA (k̂i )αrA (q̂i )×(c k̂2 ,A )2 . . . (c k̂n ,A )2 (c †q̂2 ,A )2 . . . (c †q̂n ,A )2 | Ω ⟩ =[]∫∫n∗∏4n−1 n!(n − 1)!βrA (k̂i )βrA(q̂i )= ⟨Ω |dk̂n θkn dq̂n θqn|k̂1 =q̂1 =...=q̂n ×∗(n!)2i=1 4αrA (k̂i )αrA (q̂i )×(c k̂n ,A )2 (c †q̂n ,A )2 | Ω ⟩ =[]n∫∗4n n!(n − 1)!(q̂n )βrA (q̂n )βrA=q̂n θqn⟨Ω | c †q̂n ,A c q̂n ,A | Ω ⟩ = 0∗ (q̂ )α (q̂ )(n!)24αrAnrA nÌû ïîëó÷èëè, ÷òî äëÿ ëþáîãî n > 0 âûðàæåíèÿ âèäà (2.88) íå äàþò âêëàäà ââû÷èñëÿåìûé ìàòðè÷íûé ýëåìåíò.
Òàêèì îáðàçîì, òîëüêî ãëàâíûé ÷ëåí ðàçëîæåíèÿ îêàçûâàåòñÿ íåíóëåâûì, è D, â òàêîì ñëó÷àå, ðàâíÿåòñÿ 1. Àíàëîãè÷íîíàõîäèòñÿ âûðàæåíèå äëÿ | Ω ⟩ ÷åðåç |0⟩, â ýòîì ñëó÷àå ñëåäóåò òîëüêî îáðàòèòüâíèìàíèå íà òî, ÷òî îáëàñòè èíòåãðèðîâàíèÿ k̂ ìåíÿþòñÿ, òàê êàê äåéñòâóþòäðóãèå äèñïåðñèîííûå ñîîòíîøåíèÿ. Âûïèøåì îáà ïîëó÷åííûõ âûðàæåíèÿ, ∫∗∑ β (k̂) †2rA|0⟩ = exp (c k̂,A )2 θ(k1A(k̂)) dk̂ | Ω ⟩A=±,L 2αrA (k̂)[∫| Ω ⟩ = exp(θ(ω − m −222k⊥)∑ −β ∗ (k̂)Ar∗r=1,2,3 2αAr (k̂))](2.92)(a †k̂, r )2 dk̂ |0⟩Ñòîèò îáðàòèòü âíèìàíèå íà òî, ÷òî â íàøåé ìîäåëè îáà îïèñûâàåìûõ ôîêîâñêèõ âàêóóìà ÿâëÿþòñÿ èñòèííûìè, íî êàæäûé â ñâîåé îáëàñòè.