Диссертация (1150860), страница 6
Текст из файла (страница 6)
Êàíîíè÷åñêîå êâàíòîâàíèå ïîëÿ Ìàêñâåëëà-×åðíà-ÑàéìîíñàÄëÿ íàïèñàíèÿ îáùåãî ðåøåíèÿ íàì ïîíàäîáÿòñÿ, òàê íàçûâàåìûå, êèðàëüíûå âåêòîðà ïîëÿðèçàöèè âåêòîðíîãî ïîëÿ Ìàêñâåëëà-×åðíà-Ñàéìîíñà(Ì×Ñ).Îòïðàâíàÿ òî÷êà ýòî ñèììåòðè÷íûé òåíçîð âòîðîãî ðàíãà [96],S νλ ≡ εµναβ ζα kβ εµλρσ ζ ρ k σ = δ νλ D +k ν kλ ζ 2 +ζ ν ζλ k 2 −ζ ·k (ζλ k ν +ζ ν k λ ) (2.18)ãäåD ≡ (ζ · k)2 − ζ 2 k 2 =12S νν .Ó÷èòûâàÿ ïîñëåäíåå ðàâåíñòâî, ìîæíî ïîëó÷èòü ñëåäóþùèå òîæäåñòâà,S νλ ζ λ = S νλ k λ = 0S µν S νλ = D S µλS νν = 2 D(2.19)èS µλ ελναβ ζ α k β = D ε µναβ ζ α k β(2.20)Òåïåðü ââåäåì äâà îðòîíîðìèðîâàííûõ îäíîìåðíûõ ýðìèòîâûõ ïðîåêòîðà,π µν± ≡1S µνi∗µν ∗± εµναβ ζα kβ D − 2 = (π νµ± ) = (π ∓ )2D2(D > 0)(2.21)Ñëåäóåò îòìåòèòü, ÷òî äîáàâêà, ñîäåðæàùàÿ òåíçîð Ëåâè-×èâèòû âñåãäàìíèìàÿ äëÿ âðåìåíèïîäîáíîãî âåêòîðà ×åðíà-Ñàéìîíñà ζµ = (ζ0 , 0, 0, 0), â òîâðåìÿ êàê äëÿ ïðîñòðàíñòâåííîïîäîáíîãî ζµ = (0, −ζx , 0, 0) îíà áóäåò ìíèìîé òîëüêî â îáëàñòè k02 ≥ k22 + k32 .
Ïðèâåäåííàÿ ïàðà êèðàëüíûõ ïðîåêòîðîâôàêòè÷åñêè äàåò îáúÿñíåíèå ÿâëåíèþ äâóëó÷åïðåëîìëåíèÿ èëè ýôôåêòó âàêóóìà Ôàðàäåÿ è óäîâëåòâîðÿåò ñëåäóþùèì ïîëåçíûì ñâîéñòâàì äëÿ ëþáîãî38k µ = (k0 , k),µνπ µν± ζν = π ± kν = 0µπ µλ± π ± λν = π ± νg µν π µν± = 1(2.22)π µλ± π ∓ λν = 0(2.23)µνµνπ µν+ + π− = S /Dµνµναβπ µνζα kβ D − 2+ − π − = iε1Íàøà öåëü ïîñòðîåíèå êèðàëüíûõ âåêòîðîâ ïîëÿðèçàöèè âåêòîðíîãî ïîëÿ Ìàêñâåëëà-×åðíà-Ñàéìîíñà, äâà èç íèõ ìîãóò áûòü ïîñòðîåíû èç íåêîòîðûõòåòðàä ϵν , ñîñòîÿùèõ èç ïîñòîÿííûõ çíà÷åíèé.22222 2 222π µλ± ϵµ ϵλ = D ϵ + ζ (ϵ · k) = [ (ζ · k) − ζ k ] ϵ + ζ (ϵ · k) .(2.24)Ê ïðèìåðó, åñëè ìû âîçüìåì ϵν = (0, 0, 0, 1), è âûáåðåì ïðîñòðàíñòâåííûé âåêòîðà ×åðíà-Ñàéìîíñà ζµ = (0, − ζx , 0, 0), òî ïîëó÷èìπ µλ± ϵµ ϵλk22 − k02k32= 2= −1 + 2<0k0 − k22 − k32k3 + k22 − k02∀ k µ = (k0 , k),k02 ≥ k22 − k32 .√Èëè, åñëè ìû õîòèì ñèììåòðè÷íîñòè, ϵ̄ ν = (0, 1, 1, 1)/ 3, òîãäà äëÿ âðåìåííîãîâåêòîðà ×åðíà-Ñàéìîíñà ζµ = (ζ0 , 0, 0, 0) ðåçóëüòàò áóäåò,π µλ± ϵ̄µ ϵ̄λ1 (k1 + k2 + k3 )2=− +<026k2∀ k µ = (k0 , k)Òàêèì îáðàçîì, â îáîèõ ñëó÷àÿõ ìû ïîñòðîèëè ïàðó ïðîñòðàíñòâåííîïîäîáíûõêèðàëüíûõ âåêòîðà ïîëÿðèçàöè, π µλ ϵ [(k 2 − k 2 )/(k 2 + k 2 − k 2 )]− 12± λ20320ε µ± (k) =1[µλ π ϵ̄λ 1 − (k1 + k2 + k3 )2 /6k2 ]− 2±2ζµ = (0, − ζx , 0, 0)ζµ = (ζ0 , 0, 0, 0)(2.25)Ïðè D > 0 ýòà ïàðà êèðàëüíûõ âåêòîðîâ ïîëÿðèçàöèè óäîâëåòâîðÿåò ñëåäóþùèì ñâîéñòâàì,µε µ∗± (k) = ε ∓ (k)− gµν ε±µ∗ (k) ε±ν (k) = 1gµν ε±µ∗ (k) ε∓ν (k) = 039êðîìå òîãî,µµννν−1 µνε+µ∗ (k) ε ν+ (k) + ε µ∗S− (k) ε− (k) = ε− (k) ε + (k) + ε + (k) ε− (k) = D(2.26)Òåïåðü, äëÿ òîãî, ÷òîáû ïîëó÷èòü íîðìàëüíûå ìîäû ðàñïðîñòðàíåíèÿ êâàíòîâîãî ïîëÿ Ì×Ñ, ââåäåì êèíåòè÷åñêóþ 4 × 4 ýðìèòîâóþ ìàòðèöó K ñ ýëåìåíòàìè,()K λν ≡ g λν k 2 − m2 + iελναβ ζ α k β(2.27)ïðè÷åì,∗K λν = K νλÒåïåðü ìîæíî íàéòè îáùåå ðåøåíèå óðàâíåíèé ñâîáîäíîãî ïîëÿ (2.7) äëÿ ïîëóïðîñòðàíñòâà ζ · x < 0.Èç ñîîòíîøåíèé (2.22) è (2.23) ìîæíî âûâåñòè,K µνε±ν (k)[()√k −m + D(√ ) µ22= k − m ± D ε± (k).=δ µν22( π µ+ ν−π µ− ν]) ε±µ (k)(2.28)Îòñþäà âèäíî, ÷òî âåêòîðû ïîëÿðèçàöèè ïîëîæèòåëüíîé è îòðèöàòåëüíîé êèðàëüíîñòè ÿâëÿþòñÿ ðåøåíèÿìè óðàâíåíèé íà âåêòîðíîå ïîëå ïðè ζ · x < 0 åñëèè òîëüêî åñëè,ωk,±( 0)µk±= (ω k , ± , k)ε±µ (k, ζ0 ) = ε±µ (k± )k± = ω k , ± (2.29)√k2 + m2 ± ζ0 | k |ζµ = (ζ0 , 0, 0, 0)√√=(2.30) k2 + m2 + 12 ζx2 ± ζx k12 + m2 + 14 ζx2ζµ = (0, − ζx , 0, 0)µÑëåäóåò îòìåòèòü, ÷òî ÷åòûðåõ-âåêòîð k− = (ω k , − , k), êîòîðûé óêàçûµâàåò íà ïîëÿðèçàöèþ ε− (k− ) îòðèöàòåëüíîé êèðàëüíîñòè, ìîæåò ñóùåñòâîâàòü2âíóòðè ñâåòîâîãî êîíóñà k−> 0 òîëüêî åñëè ïðîñòðàíñòâåííûé èìïóëüñ îãðàíè÷åí ñâåðõó | k | < m2 /|ζ0 | â ñëó÷àå âðåìåííîãî âåêòîðà ×åðíà-Ñàéìîíñà èëè| k | < m2 /|ζx | äëÿ ïðîñòðàíñòâåííîãî [96].
Òàêæå, ñòîèò ïîä÷åðêíóòü, ÷òî êèðàëüíûå ïîëÿðèçàöèè Ì×Ñ íå èìåþò íè÷åãî îáùåãî ñ ýëëèïòè÷åñêèìè ïîëÿðèçàöèÿìè ýëåêòðîìàãíèòíîãî ïîëÿ, íàïðèìåð ïîòîìó, ÷òî Ì×Ñ èñïûòûâàþòäâóëó÷åïðåëîìëåíèå â âàêóóìå, à ýëëèïòè÷åñêèå íåò.40×òîáû çàâåðøèòü ïîñòðîåíèå áàçèñà, ââåäåì åùå îäíó ïàðó îðòîíîðìèðîâàííûõ âåêòîðîâ ïîëÿðèçàöèè, íàçûâàåìûõ ñêàëÿðíîé(scalar) è ïðîäîëüíîé(longitudinal) ïîëÿðèçàöèÿìè,ε µS (k)ε µL (k) ≡( 2 )− 12 ( 2 µ)Dkk ζ − kµ ζ · kkµ≡ √k2( k2 > 0 )(2.31)( k2 > 0 ∨ D > 0 )(2.32)ýòè âåêòîðà ïî ïîñòðîåíèþ óäîâëåòâîðÿþò ñëåäóþùèì ñîîòíîøåíèÿì,kµ ε µL (k) = 0kµ ε µS (k) =√k2( k2 > 0 )(2.33)gµν ε µL (k) ε νL (k) = − 1(2.34)g µν ε µS (k) ε νL (k) = g µν ε µS (k) ε±ν (k) = g µν ε µL (k) ε±ν (k) = 0(2.35)gµν ε µS (k) ε νS (k) = 1Òåïåðü â íàøåì ðàñïîðÿæåíèè äëÿ ëþáûõ k µ ñ k 2 > 0 ∨ D > 0 ïîëíûé èîðòîíîðìèðîâàííûé íàáîð èç ÷åòûðåõ âåêòîðîâ ïîëÿðèçàöèè,√µk2k/() √2 µµε µA (k) =k ζ − k ζ · k / D k2ε µ (k± )A=S( k 2 > 0 ∨ D > 0 ) (2.36)A=LA=±±Ââåäåì 4 × 4 ïîëÿðèçàöèîííóþ ìàòðèöó,g AB = g AB≡100 −1000000−10000−1( A, B = S, L, +, − ).(2.37)Èñïîëüçóÿ å¼ ìîæíî íàïèñàòü ñëåäóþùèå ñîîòíîøåíèÿ,νgµν ε µ∗A (k) ε B (k) = gABνµνg AB ε µ∗A (k) ε B (k) = g ,(2.38)ãäå áûëà èñïîëüçîâàíà ïîïåðå÷íîñòü,kν ε νA (k) =√k 2 δAS .(2.39)41×òîáû ïîëíîñòüþ îñóùåñòâèòü êàíîíè÷åñêîå êâàíòîâàíèå ìàññèâíîãî âåêòîðíîãî ïîëÿ Ì×Ñ äëÿ ðàññìàòðèâàåìîãî ñëó÷àÿ κ = 1, óäîáíî ââåñòè ïîëÿðèçîâàííûå ïëîñêèå âîëíû,[]− 1v kν A (x) = (2π)3 2ω k A 2 ε νA (k) exp{− iω k A x0 + ik · x},(2.40)ãäå äèñïåðñèîííûå ñîîòíîøåíèÿ äëÿ ñêàëÿíîé è ïðîäîëüíîé ïîëÿðèçàöèè ñîâïàäàþò,ωkS = ωkL =√k2 + m2 ≡ ω kïîýòîìó, ìîæíî íàïèñàòükν ε νS (k) = mi∂ν v kν S (x) = u k (x)(2.41)Ñîîòâåòñòâåííî, îáùåå ðåøåíèå óðàâíåíèé Ýéëåðà-Ëàãðàíæà (2.6) äëÿ êâàíòîâîãî ìàññèâíîãî âåêòîðíîãî ïîëÿ â ñëó÷àå κ = 1 è ζ · x < 0 ïðèíèìàåò âèä,Aν (x) = AνCS (x) − ∂ ν B(x)/m2∫]∑ [†ννν∗ACS (x) = dkc k,A v k A (x) + c k,A v k A (x)∫A=±,L[B(x) = m dk b k u k (x) +b †k u∗k (x)](2.42)(2.43)(2.44)ãäå äëÿ c, c † âûïîëíÿþòñÿ êàíîíè÷åñêèå êîììóòàöèîííûå ñîîòíîøåíèÿ,[c k,A ,c †k′ ,A′]= − gAA′ δ(k − k′ )c k,S = b k ,(2.45)âñå îñòàëüíûå êîììóòàòîðû ðàâíû íóëþ.Çàìåòèì, ÷òî ìàññèâíûå îäíî÷àñòè÷íûå ñîñòîÿíèÿ Ì×Ñ ñ îïðåäåëåííûìèìïóëüñîì k èìåþò òðè ïîëÿðèçàöèè, à èìåííî, îäíó ïðîäîëüíóþ ñ âåùåñòâåííûì âåêòîðîì ε νL (k) ñ äèñïåðñèîííûì ñîîòíîøåíèåì k 2 = m2 è äâå ïîïåðå÷íûåñ êîìïëåêñíûìè âåêòîðàìè ε ν± (k± ) è äèñïåðñèîííûìè ñîîòíîøåíèÿìè (2.30).Ïðè ýòîì ñîñòîÿíèå ñ îòðèöàòåëüíîé êèðàëüíîñòüþ ε ν− (k− ) îïðåäåëåíî òîëüêî2â ñëó÷àå |k| < Λ ⇔ k−> 0.422.2.
Ïðåîáðàçîâàíèå ÁîãîëþáîâàÎáà îïèñàííûõ âûøå ðåøåíèÿ âåêòîðíîå ïîëå Ïðîêà-Øòþêåëáåðãà èìàññèâíîå âåêòîðíîå ïîëå Ìàêñâåëëà-×åðíà-Ìàéìîíñà âñòðå÷àþòñÿ íà ãèïåðïîâåðõíîñòè ζ · x = 0, íà êîòîðîé, ñîîòâåòñòâåííî, çíà÷åíèÿ äàííûõ ïîëåéäîëæíû ñîâïàäàòü,δ(ζ · x) [ AµPS (x) − AµCS (x) ] = 0(2.46)îòìåòèì, ÷òî âñïîìîãàòåëüíîå íåôèçè÷åñêîå ïîëå B(x) íèêàê íå ðåàãèðóåò íàñóùåñòâîâàíèå ãðàíèöû ζ ·x = 0. Äëÿ ïðèìåðà, äàâàéòå ðàññìîòðèì ñëó÷àé ïðîñòðàíñòâåííîãî âåêòîðà ×åðíà-Ñàéìîíñà ζµ = (0, − ζx , 0, 0), δ(ζ · x) = ζx−1 δ(x).Äëÿ óäîáñòâà, îïðåäåëèì ñëåäóþùèå îáúåêòû: k̂ = (ω, k2 , k3 ), x̂ = (x0 , x2 , x3 ),k̂ · x̂ = −ωx0 + k2 x2 + k3 x3 . Ïðè ýòîì äèñïåðñèîííûå ñîîòíîøåíèÿ ìû áóäåìèñïîëüçîâàòü â âèäå k1A = k1A (k̂).
ßâíûé âèä çàâèñèìîñòè áóäåò ïðåäñòàâëåí âñëåäóþùåé ãëàâå. Òîãäà ðåøåíèå ìû ìîæåì ïåðåïèñàòü â âèäå:∫AµPS (x)=dk̂ θ(ω −22k⊥−m )23 [∑a k̂ , r u µk̂ , r (x)+a†k̂ , ru µk̂ ,∗r (x)], (2.47)r=1∂µ AµPS (x) = 0uνk̂ , r (x) = [ (2π)3 2k10 ]−1/2 e νr (k̂) exp{ i k10 x1 + i k̂ · x̂}( r = 1, 2, 3 ) (2.48)ïðè x1 > 0.Çäåñü îïåðàòîðû ðîæäåíèÿ-óíè÷òîæåíèÿ óäîâëåòâîðÿþò êàíîíè÷åñêèì êîììóòàöèîííûì ñîîòíîøåíèÿì,[ a k̂ , r , a†k̂′ , s ] = δ(k̂ − k̂ ′ ) δrs(2.49)âñå îñòàëüíûå êîììóòàòîðû ðàâíû íóëþ. Òðè âåêòîðà ïîëÿðèçàöèè íà ìàññîâîéïîâåðõíîñòè k 2 = m2 óäîâëåòâîðÿþò ñëåäóþùèì ñîîòíîøåíèÿì,kµ eµr (k̂)=0−gµν eµr (k̂)eνs (k̂)= δrs3∑r=1eµr (k̂)eνr (k̂) = −g µν +kµkν(2.50)m243Ïðè x1 < 0 ìû èìååì:∫AνCS (x)dk̂ θ(ω −2=2k⊥−m )2∑[c k̂,A v k̂ν A (x)+c †k̂,A v k̂ν∗A (x)](2.51)AA ∈ {L, +, −}[]− 1v k̂ν A (x) = (2π)3 2k1A 2 ε νA (k) exp{ ik10 x1 + ik̂ · x̂}(2.52)ïðè êàíîíè÷åñêèõ êîììóòàöèîíííûõ ñîîòíîøåíèÿõ,[c k̂,A ,c †k̂′ ,A′]= − gAA′ δ(k̂ − k̂ ′ ),(2.53)âñå îñòàëüíûå êîììóòàòîðû ðàâíû íóëþ.
Òàêèì îáðàçîì, ãðàíè÷íûå óñëîâèÿïðèíèìàþò âèä,∫2dk̂ θ(ω 2 − k⊥− m2 ) ×{}3] ∑[]∑[µ†µ∗µ†µ∗c k̂,A v k̂,A (x̂) + c k̂,A v k̂,A (x̂) −×a k̂ , r u k̂,r (x̂) + a k̂ , r u k̂,r (x̂)=0(2.54)r=1AÏðåäïîëàãàÿ ÷òîν(x̂)v k̂,A=3 [∑αsA (k̂) u νk̂,s (x̂)−](x̂)βsA (k̂) u ν∗k̂,s,(2.55)s=1ìû ìîæåì, ñ îäíîé ñòîðîíû, íàéòè,∫⟨⟩←→ νµνu p̂,r | v k̂,A ≡ −i dx̂ u µ∗(t,y,z)∂1 v k̂,A (t, y, z)p̂,rk1A + k10=− √exp{ix1 (k10 − k1A )} δ(k̂ − p̂) eµr (k̂) ενA (k̂)2 k1A k10(2.56)À ñ äðóãîé ïîëó÷àåì,⟨⟩u µp̂,r | u λk̂,s = δ(k̂ − p̂) eµr (k̂) eλs (k̂)(2.57)⟨⟩µλ∗u p̂,r | u k̂,s = 0(2.58)è, ñëåäîâàòåëüíî,⟨u µp̂,rν| v k̂,A⟩= δ(k̂ − p̂)3∑s=1αsA (k̂) eνs (k̂) eµr (k̂)⟨µ∗u p̂,rν| v k̂,A⟩=0(2.59)(2.60)44Ñðàâíèâàÿ ïîëó÷åííûå âûøå âûðàæåíèÿ, èìååì,∑k1A + k10ν√−exp{ix1 (k10 − k1A )} εA (k̂) =αsA (t, k̂) eνs (k̂)2 k1A k10s=13(2.61)÷òî äàåò íàìk1A + k10αsA (k̂) = − 12 gµν εAµ (k̂) eνs (k̂) √exp{ix1 (k10 − k1A )}k1A k10(2.62)Íî ìû çíàåì, ÷òî íàøà ãðàíèöà èìååò âèä x1 = 0, ïîýòîìó exp{ix1 (k10 −k1A )} =1, è ïðåäûäóùåå ðàâåíñòâî ìîæíî ïåðåïèñàòü,k1A + k10αsA (k̂) = − 12 gµν εAµ (k̂) eνs (k̂) √.k1A k10(2.63)Ïîëó÷åííûé ðåçóëüòàò ìîæíî ïðîâåðèòü ïðÿìîé ïîäñòàíîâêîé.Òåïåðü âû÷èñëèì ìàòðè÷íûå ýëåìåíòû3 [∑∗αsA (k̂) αsB(k̂)−∗βsA (k̂) βsB(k̂)]A, B = L, ±s=1Ñíà÷àëà íàéäåì12gµν εAµ (k̂) 21gικ εBι∗ (k̂)3∑eνs (k̂) eκs (k̂)s=1()kkιµµ= 14 εA (k̂) εBι∗ (k̂) − gιµ + 2 = − 14 gιµ εAµ (k̂) εBι∗ (k̂) = 41 δABmçäåñü áûëè èñïîëüçîâàíû óñëîâèÿ ïîïåðå÷íîñòè (2.39)è îðòîíîðìèðîâàííîñòè(2.17), à òàêæå òîò ôàêò, ÷òî êîâàðèàíòíûå âåêòîðû ïîëÿðèçàöèè ìîæíî âûáðàòü âåùåñòâåííûìè.