Диссертация (1150807), страница 17
Текст из файла (страница 17)
2011. Dec. Vol. 234, no. 2. P. 8494. URL:mbs.2011.08.007.http://dx.doi.org/10.1016/j.40. Grossman Z. Mathematical modeling of thymopoiesis in HIV infection: real data, virtual data,and data interpretation. // Clin Immunol. 2003. Jun. Vol. 107, no. 3. P. 137139.41. Ìàòåìàòè÷åñêèå òåõíîëîãèè àíàëèçà êèíåòè÷åñêèõ ôàêòîðîâ ðàçâèòèÿ èììóííûõ ðåàêöèé / Ã.À. Áî÷àðîâ, Â.À. ×åðåøíåâ, Ò.Á Ëóçÿíèíà [è äð.] // Òåõíîëîãèè æèâûõ ñèñòåì.2009. Ò.
6, 7. Ñ. 415.42. Ìàð÷óê Ã.È. Ìàòåìàòè÷åñêèå ìîäåëè â èììóíîëîãèè: âû÷èñëèòåëüíûå ìåòîäû è ýêñïåðèìåíòû. Íàóêà, 1991. Ñ. 299.43. Tan W.Y., Wu H. Deterministic and stochastic models of AIDS epidemics and HIV infectionswith intervention. World Scientific, 2005. URL:id=1mpL1ygISfQC.85http://books.google.ru/books?44. Wodarz D. Killer cell dynamics: mathematical and computational approaches to immunology.Interdisciplinary applied mathematics.Springer, 2007.Ñ.
220. URL:google.ru/books?id=RhuYVLsExJgC.http://books.45. Molina Pars C. Mathematical Models and Immune Cell Biology / ïîä ðåä. C. MolinaPars, G. Lythe.Springer, 2011.Ñ. 407. URL:id=wlELSzYr_bMC.46. Nowak M.A. Evolutionary dynamics:of Harvard University Press,http://books.google.ru/books?exploring the equations of life.2006.
URL:YXrIRDuAbE0C.Belknap Presshttp://books.google.ru/books?id=47. Mathematical modeling of tumor therapy with oncolytic viruses:regimes with completetumor elimination within the framework of deterministic models. / A. S. Novozhilov,F. S. Berezovskaya, E. V. Koonin et al. // Biol Direct.2006.Vol. 1.P. 6. URL:http://dx.doi.org/10.1186/1745-6150-1-6.48. Komarova N. L., Wodarz D. ODE models for oncolytic virus dynamics.
// J Theor Biol. 2010.Apr.Vol. 263, no. 4.P. 530543. URL:2010.01.009.http://dx.doi.org/10.1016/j.jtbi.49. Lagache T., Dauty E., Holcman D. Physical principles and models describing intracellularvirus particle dynamics. // Curr Opin Microbiol. 2009. Aug. Vol. 12, no. 4. P. 439445. URL:http://dx.doi.org/10.1016/j.mib.2009.06.015.50. Celada F.
The cellular basis of immunologic memory. // Prog Allergy. 1971. Vol. 15. P. 223267.51. Dintzis H. M., Dintzis R. Z., Vogelstein B. Molecular determinants of immunogenicity: theimmunon model of immune response. // Proc Natl Acad Sci U S A. 1976. Oct. Vol. 73, no.
10.P. 36713675.52. Perelson Alan S., Weisbuch Gerard. Immunology for physicists // Rev. Mod. Phys. 1997. Oct.Ò. 69.Ñ. 12191268. URL:69.1219.http://link.aps.org/doi/10.1103/RevModPhys.53. A new bell-shaped function for idiotypic interactions based on cross-linking.
/ R. J. De Boer,M. C. Boerlijst, B. Sulzer et al. // Bull Math Biol. 1996. Mar. Vol. 58, no. 2. P. 285312.54. Dembo M., Goldstein B. Theory of equilibrium binding of symmetric bivalent haptens to cellsurface antibody: application to histamine release from basophils. // J Immunol. 1978. Jul.Vol. 121, no. 1. P.
345353.55. Goldstein B., Perelson A. S. Equilibrium theory for the clustering of bivalent cell surfacereceptors by trivalent ligands. Application to histamine release from basophils. // Biophys86J.1984. Jun.Vol. 45, no. 6.P. 11091123. URL:S0006-3495(84)84259-9.http://dx.doi.org/10.1016/56. DeLisi C., Perelson A. The kinetics of aggregation phenomena. I. Minimal models for patchformation of lymphocyte membranes. // J Theor Biol.
1976. Oct. Vol. 62, no. 1. P. 159210.57. Histamine release due to bivalent penicilloyl haptens the relation of activation and desensitization of basophils to dynamic aspects of ligand binding to cell surface antibody. / M. Dembo,B. Goldstein, A. K. Sobotka et al. // J Immunol. 1979. Feb. Vol. 122, no. 2. P. 518528.58. Alan S. Perelson, Charles DeLisi. Receptor clustering on a cell surface. I. theory of receptorcross-linking by ligands bearing two chemically identical functional groups // Mathematicalhttp://www.sciencedirect.com/science/article/pii/0025556480900176.Biosciences. 1980.
Ò. 48, 1-2. Ñ. 71 110. URL:59. Goldsten Byron,Wofsy Carla. Theory of equilibrium binding of a bivalent ligand tocell surface antibody:Mathematical Biology.The effect of antibody heterogeneity on cross-linking // Journal of1980.Ò. 10.Ñ. 347366.10.1007/BF00276094. URL://dx.doi.org/10.1007/BF00276094.http:60. Vogelstein B., Dintzis R. Z., Dintzis H. M. Specific cellular stimulation in the primary immuneresponse: a quantized model. // Proc Natl Acad Sci U S A. 1982. Jan. Vol.
79, no. 2. P. 395399.61. Faro J., Velasco S. Crosslinking of membrane immunoglobulins and B-cell activation:asimple model based on percolation theory. // Proc Biol Sci. 1993. Nov. Vol. 254, no. 1340.P. 139145. URL:http://dx.doi.org/10.1098/rspb.1993.0138.62. Sulzer B., De Boer R. J., Perelson A.
S. Cross-linking reconsidered: binding and cross-linkingfields and the cellular response. // Biophys J. 1996. Mar. Vol. 70, no. 3. P. 11541168. URL:http://dx.doi.org/10.1016/S0006-3495(96)79676-5.63. Memory in idiotypic networks due to competition between proliferation and differentiation. /B. Sulzer, J. L. van Hemmen, A. U. Neumann et al. // Bull Math Biol. 1993. Nov.
Vol. 55,no. 6. P. 11331182.64. De Boer R. J., Hogeweg P. Memory but no suppression in low-dimensional symmetric idiotypic networks. // Bull Math Biol. 1989. Vol. 51, no. 2. P. 223246.65. De Boer R. J., Perelson A. S., Kevrekidis I. G. Immune network behaviorI. From stationarystates to limit cycle oscillations. // Bull Math Biol. 1993. Vol.
55, no. 4. P. 745780.66. Bhanot G. Results from modeling of B-Cell receptors binding to antigen. // Prog Biophys MolBiol.2004.Vol. 85, no. 2-3.P. 343352. URL:pbiomolbio.2004.01.008.87http://dx.doi.org/10.1016/j.67. Alarcon T., Page K. M. Stochastic models of receptor oligomerization by bivalent ligand. // JR Soc Interface. 2006. Aug. Vol.
3, no. 9. P. 545559. URL:1098/rsif.2006.0116.http://dx.doi.org/10.68. Aggregation of membrane proteins by cytosolic cross-linkers: theory and simulation of theLAT-Grb2-SOS1 system. / A. Nag, M. I. Monine, J. R. Faeder et al. // Biophys J. 2009. Apr.Vol. 96, no. 7.P. 26042623. URL:01.019.http://dx.doi.org/10.1016/j.bpj.2009.69. Bioinformatics and mathematical modelling in the study of receptorreceptor interactions andreceptor oligomerization: Focus on adenosine receptors / Diego Guidolin, Francisco Ciruela,Susanna Genedani [è äð.] // Biochimica et Biophysica Acta (BBA) - Biomembranes. 2011.http://www.sciencedirect.com/science/article/pii/S0005273610003378.Ò. 1808, 5.Ñ.
1267 1283.<ce:title>Adenosine Receptors</ce:title>. URL:70. McKeithan T. W. Kinetic proofreading in T-cell receptor signal transduction. // Proc Natl AcadSci U S A. 1995. May. Vol. 92, no. 11. P. 50425046.71. Goldstein B., Faeder J. R., Hlavacek W. S. Mathematical and computational models ofimmune-receptor signalling. // Nat Rev Immunol. Theoretical Biology and Biophysics Group,Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA. bxg@lanl.gov,2004. June. Ò. 4, 6. Ñ.
445456. URL:http://dx.doi.org/10.1038/nri1374.72. Germain R. N. Computational analysis of T cell receptor signaling and ligand discriminationpast, present, and future. // FEBS Lett. 2010. Dec. Vol. 584, no. 24. P. 48144822. URL:http://dx.doi.org/10.1016/j.febslet.2010.10.027.73. TCR ligand discrimination is enforced by competing ERK positive and SHP-1 negativefeedback pathways. / Irena Stefanova, Bernhard Hemmer, Marco Vergelli [è äð.] // NatureImmunology.
2003. Ò. 4, 3. Ñ. 248.74. Hale M. B., Nolan G. P. Phospho-specific flow cytometry: intersection of immunology andbiochemistry at the single-cell level. // Curr Opin Mol Ther. 2006. Jun. Vol. 8, no. 3. P. 215224.75. Altan Bonnet G., Germain R. N. Modeling T cell antigen discrimination based on feedbackcontrol of digital ERK responses. // PLoS Biol. 2005. Nov. Vol. 3, no. 11.
P. e356. URL:http://dx.doi.org/10.1371/journal.pbio.0030356.76. Variability and robustness in T cell activation from regulated heterogeneity in protein levels. /O. Feinerman, J. Veiga, J. R. Dorfman et al. // Science.P. 10811084. URL:2008. Aug.Vol. 321, no. 5892.http://dx.doi.org/10.1126/science.1158013.77. Matthew F Krummel, Michael D Cahalan. The immunological synapse: a dynamic platformfor local signaling.