Диссертация (1150459), страница 10
Текст из файла (страница 10)
Fradkov, A. L. Passification of nonsquare linear systems and feedbackYakubovich-Kalman-Popov Lemma / A. L. Fradkov // European Journal ofControl. — 2003. — Vol. 9, no. 6. — P. 573–582.43. Fradkov, A. L. Adaptive absolute stability / A. Fradkov, M. Lipkovich // IFACPapersOnLine. — 2015. — Vol. 48, no.
11. — P. 258–263.44. Goodwin, G. C. Discrete time stochastic adaptive control / G. C. Goodwin,P. J. Ramadge, P. E. Caines // SIAM Journal on Control and Optimization. —1981. — Vol. 19, no. 6. — P. 829–853.45. Jayawardhana, B. The Circle Criterion and Input-to-State Stability/B. Jayawardhana, H. Logemann, E. Ryan // IEEE Control Systems. — 2011.— Vol.
31, no. 4. — P. 32–67.46. Jury, E. I. On the absolute stability of a certain class of nonlinear sampled-datasystems / E. I. Jury, B. W. Lee // IEEE Transactions on Automatic Control. —1964. — Vol. 9, no. 1. — P. 51–61.47. Kalman, R. E. Lyapunov functions for the problem of Lur’e in AutomaticControl / R. E. Kalman // Proc. Nation. Acad. Sci. USA. — 1963. — Vol.
49,no. 2. — P. 201–205.48. Khalil, H. K. Nonlinear Systems / H. K. Khalil. — 3rd edition. — Prentice Hall,2002.7649. Kuroe, Y. On Activation Functions for Complex-Valued Neural Networks —Existence of Energy Functions / Y. Kuroe, M. Yoshid, T. Mori // ArtificialNeural Networks and Neural Information Processing. — 2003.
— Vol. 2714. —P. 985–992.50. Landau, I A hyperstability criterion for model reference adaptive controlsystems / I. Landau // IEEE Transactions on Automatic Control. — 1969. —Vol. 14, no. 5. — P. 552–555.51. Liberzon, M. R. Essays on the absolute stability theory / M. R. Liberzon //Automation and Remote Control.
— 2006. — Vol. 67, no. 10. — P. 1610–1644.52. Lipkovich, M. Existence of quadratic Lyapunov function for the systems withseveral nonlinear blocks / M. Lipkovich // International Student Conference"Science and Progress". — 2011. — P. 73.53. Lipkovich, M. About the necessity of Popov criterion for a Lyapunov functionexistence / M. Lipkovich, A. Fradkov // International Conference of YoungScientists "Automation & Control".
— 2013. — P. 7–10.54. Lipkovich, M. Circle and Popov Criteria for the Systems with MultipleNonlinearities / M. Lipkovich // International Student Conference "Science andProgress". — 2015. — P. 55.55. Lipkovich, M. Equivalence of MIMO Circle Criterion to Existence of QuadraticLyapunov Function / M. Lipkovich, A. Fradkov // IEEE Transactions onAutomatic Control. — 2016. — Vol. 61, no. 7. — P.
1895–1899.56. Megretski, A. -procedure and power distribution inequalities: A new methodin optimization and robustness of uncertain systems / A. Megretski, S. Treil //Preprint of Mittag-Leffler institute. — 1991. — no. 1.7757. Megretski, A. Necessary and sufficient conditions of stability: a multiloopgeneralization of the circle criterion / A. Megretski // IEEE Transactions onAutomatic Control.
— 1993. — Vol. 38, no. 5. — P. 753–756.58. Monopoli, R. V. Model reference adaptive control with an augmented error /R. V. Monopoli // IEEE Transactions on Automatic Control. — 1974. — Vol. 19,no. 5. — P. 474–484.59. Morse, A. Global stability of parameter adaptive control systems / A. Morse //IEEE Transactions on Automatic Control. — 1980.
— Vol. 25, no. 3. — P. 433–439.60. Narendra, K. S. A Geometrical Criterion for the Stability of Certain NonlinearNonautonomous Systems / K. S. Narendra, R. M. Goldwyn // IEEE Transactionson Circuits and Systems. — 1964. — Vol. 11, no. 3. — P. 406–408.61. Narendra, K. S. Frequency Domain Criteria for Absolute Stability /K. S. Narendra, J. H. Taylor. — New York: Academic Press, 197362. Parks, P. C. Liapunov Redesign of Model Reference Adaptive Control Systems /P.
C. Parks // IEEE Transactions on Automatic Control. — 1966. — Vol. 11, no. 3.— P. 362–367.63. Polik, I. A survey of the S-lemma / I. Polik, T. Terlaky // SIAM Review. —2007. — Vol. 49, no. 3. — P. 371–418.64. Polyak, B. T. Convexity of Quadratic Transformations and Its Use in Control andOptimization / B. T. Polyak // Journal of Optimization Theory and Applications.— 1998. — Vol. 99, no. 3. — P. 553–583.65. Popov, V. M.
Criterii de Stabilitate Pentru Sistemele Neliniare de ReglareAutomata Bazate pe Utilizarea Transformatei Laplace / V. M. Popov // StudiiCerc. Energetica. — 1959. — Vol. 9, no. 1. — P. 119–135.7866. Popov, V. M. Hyperstability of Automatic Control Systems with SeveralNonlinear Elements / V. M. Popov // Revue Electrotech. Energ. — 1964.
—no. 9. — P. 35–45.67. Rakkiyappan, R. Complete Stability Analysis of Complex-Valued NeuralNetworks with Time Delays and Impulses / R. Rakkiyappan, G. Velmurugan,L. Xiaodi // Neural Processing Letters. — 2014. — Vol. 41, no. 3. — P. 435–468.68. Sandberg, I. W. A frequency-domain condition for the stability of feedbacksystems containing a single time-varying nonlinear element / I.
W. Sandberg //The Bell System Technical Journal. — 1964. — Vol. 43, no. 4. — P. 1601–1608.69. Willems, I. C. Dissipative dynamical systems, part II: linear systems withquadratic supply rates / I. C. Willems // Archive for Rational Mechanics andAnalysis. — 1972. — Vol. 45, no. 5. — P. 352–393.70. Wu, Min On absolute stability of Lurie control systems with multuplenonlinearities using linear matrix inequalities / Min Wu, Young He, Jinhua She //Journal of Control Theory and Applications.
— 2004. — Vol. 2, no. 2. — P. 131–136.71. Yakubovich, V. A. On a method of adaptive control under conditions of greatuncertainty / V. A. Yakubovich // Preprints of the 5th World Congress IFAC. —1972. — Vol. 37, no. 3. — P. 1–6.72. Zames, G. On the Input-Output Stability of Time-varying Nonlinear Systems.Part II: Conditions Involving Circles in the Frequency Plane and SectorNonlinearities / G.
Zames // IEEE Transactions on Automatic Control. — 1966.— Vol. 11, no. 3. — P. 465–476.79.