Диссертация (1150084), страница 16
Текст из файла (страница 16)
2010, Vol. 213(1). P. 52–60.75.Ломова Т.Н. Окислительно-восстановительные реакции в процессахкоординации порфиринов // Успехи химии порфиринов / под. ред.Голубчикова О.А. СПб. «НИИ химии СПбГУ». 2001, Т. 3. P. 233–244.76.Kadish K.M. Elecrtochemistry of metalloporphyrins in non-aqueous media // Theporphyrin handbook / Eds. Kadish K.M., Smith K.M., Guilard R. New York:Academic Press: San Diego. 2000.
Vol. 8. Chapter 55. p. 1–114.77.Bard A.J., Faulkner L.R. Electrochemical methods: fundamentals andapplications // Annual Review of Materials Science. New York: John Wiley &Sons, INC. 2001. Vol. 30. 864 p.78.Mashiko T., Dolphin D. Porphyrins, hydroporphyrins, azaporphyrins,phtalocyanines, corroles, corrins and related macrocycle // Eds. Wilkinson G.,Guilard R., McCleverty S.A. Oxford. «Pergamon Press».
1987. Vol. 2. p. 813-898.79.Ghosh A. Quantum chemical studies of molecular structures and potential energysurfaces of porphyrins and hemes // The porphyrin handbook / Eds. Kadish K.M.,Smith K.M., Guilard R. New York. «Academic Press». 2000. p. 177–246.80.Kadish K.M., Van Caemelbecke E., D’Souza F., Medforth C.J., Smith K.M.,Tabard A., Guilard R.
Electrochemistry and spectroelectrochemistry of α-bondediron(III) porphyrins with nonplanar porphyrin rings. Reactions of (OETPP)Fe(R)and (OETPP)FeCl, where R = C6H5, C6F4H, or C6F5 and OETPP is the dianion of2,3,7,8,12,13,17,18-octaethyl-5,10,15 // Inorg Chem. 1995, Vol. 34(11). P. 2984–2989.81.Kadish K.M., Li J., Van Caemelbecke E., Ou Z., Guo N., Autret M., D’Souza F.,TagliatestaP.Electrooxidationofcobalt(II)β-brominated-pyrroletetraphenylporphyrins in CH2Cl2 under an N2 or a CO atmosphere // Inorg Chem.1997, Vol.
36(27). P. 6292–6298.10282.ТарасевичМ.Р.,РадюшкинаК.А.Катализметаллопорфиринами // М. «Наука». 1982. 168 с.83.Kadish K.M., Will S., Adamian V.A., Walther B., Erben C., Ou Z., Guo N., Vogel E.Synthesis and electrochemistry of tin(IV) octaethylcorroles, (OEC)Sn(C 6H5) and(OEC)SnCl // Inorg Chem. 1998, Vol. 37(18).
P. 4573–4577.84.Kadish K.M., Xu Q.Y.Y., Maiya G.B., Barbe J.-M., Guilard R. Effect of axiallybound anions on the electroreduction of tin(IV) porphyrins in tetrahydrofuran // JChem Soc Dalt Trans. 1989, (8). P. 1531-1536.85.Campbell W.M., Burrell A.K., Officer D.L., Jolley K.W.
Porphyrins as lightharvesters in the dye-sensitised TiO2 solar cell // Coord Chem Rev. 2004, Vol. 248.P. 1363–1379.86.Malinka E.A., Kamalov G.L., Vodzinskii S.V., Melnik V.I., Zhilina Z.I. Hydrogenproduction from water by visible light using zinc porphyrin-sensitized platinizedtitanium dioxide // J Photochem Photobiol A Chem. 1995, Vol. 90. P. 153–158.87.Mele G., Del Sole R., Vasapollo G., García-López E., Palmisano L., Schiavello M.Photocatalytic degradation of 4-nitrophenol in aqueous suspension by usingpolycrystalline TiO2 impregnated with functionalized Cu(II)-porphyrin or Cu(II)phthalocyanine // J Catal.
2003, Vol. 217. P. 334–342.88.Balzani V., Credi A., Venturi M. Photochemical conversion of solar energy //ChemSusChem. 2008, Vol. 1 P. 26-58.89.McCree K.J. The action spectrum, absorptance and quantum yield ofphotosynthesis in crop plants // Agric Meteorol. 1971-1972, Vol. 9(3). P. 191–216.90.Photosynthesis//Wikipedia.https://en.wikipedia.org/wiki/Photosynthesis91.Itoh T., Yano K., Inada Y., Fukushima Y.
Photostabilized chlorophyll a inmesoporous silica: adsorption properties and photoreduction activity ofchlorophyll a // J Am Chem Soc. 2002, Vol. 124(18). P. 13437–13441.92.Borgarello E., Kiwi J., Pelizzetti E., Visca M., Grätzel M. Photochemical cleavageof water by photocatalysis // Nature. 1981, Vol. 289. P. 158–160.93.Kalyanasundaram K., Kiwi J., Gratzel M. Hydrogen evolution from water byvisible light, a homogeneous three component test system for redox catalysis //Helv Chim Acta. 1978, Vol.
61(256). P. 2720–2730.2016.иэлектрокатализРежимдоступа:10394.Kim W., Tachikawa T., Majima T., Li C., Kim H.-J., Choi W. Tin-porphyrinsensitized TiO2 for the production of H2 under visible light // Energy Environ Sci.2010, Vol. 3. P. 1789-1795.95.Takagi S., Eguchi M., Shimada T., Hamatani S., Inoue H. Energy transfer reactionof cationic porphyrin complexes on the clay surface: effect of sample preparationmethod // Res Chem Intermed. 2007, Vol.
33(1-2). P. 177–189.96.Eguchi M., Tachibana H., Takagi S., Inoue H. Microscopic structures of adsorbedcationic porphyrins on clay surfaces: molecular alignment in artificial lightharvesting systems // Res Chem Intermed. 2007, Vol. 33(1-2). P. 191–200.97.Kurimoto K., Yamazaki T., Suzuri Y., Nabetani Y., Onuki S., Takagi S., Shimada T.,Tachibana H., Inoue H. Hydrogen evolution coupled with the photochemicaloxygenation of cyclohexene with water sensitized by tin(IV) porphyrins by visiblelight.
// Photochem Photobiol Sci. 2014, Vol. 13. P. 154–156.98.Takagi S., Eguchi M., Tryk D.A., Inoue H. Porphyrin photochemistry ininorganic/organic hybrid materials: сlays, layered semiconductors, nanotubes, andmesoporous materials // J Photochem Photobiol C Photochem Rev. 2006, Vol. 7(23). P. 104–126.99.Bioelectrochemistry: fundamentals, experimental techniques and applications //Ed. Bartlett P.N.
Chichester, UK. «John Wiley & Sons Inc». 2008. 494 p.100. Ulas G., Brudvig G.W. Energy conversion in photosynthesis // Energy productionand storage: inorganic chemical strategies for a warming world / Ed. CrabtreeR.H. New Haven, CT, USA «John Wiley & Sons Inc». 2010. 426 p.101. Trasatti S. The absolute electrode potential: an explanatory note // Pure ApplChem. 1986, Vol. 58(7). P. 955–966.102. Dolphin D. Spectro-electrochemistry: porphyrins and metalloporphyrins //Primary photo-processes in biology and medicine / Eds.
Bensasson R. V., Jori G.,Land E.J., Truscott T.G. «New York Springer US». 1985. P. 171–180.103. Koposova E., Shumilova G., Ermolenko Y., Kisner A., Offenhäusser A., MourzinaY. Direct electrochemistry of cyt c and hydrogen peroxide biosensing onoleylamine- and citrate-stabilized gold nanostructures // Sensors Actuators BChem. 2015, Vol. 207. P. 1045–1052.104104. Handman J., Harriman A., Porter G. Photochemical dehydrogenation of ethanolin dilute aqueous solution // Nature.
1984, Vol. 307. P. 534–535.105. Baral S., Hambright P., Neta P. One-and two-electron reduction of aluminum andtin pyridylporphyrins. A kinetic spectrophotometric study // J Phys Chem. 1984,Vol. 88(2). P. 1595–600.106. Sutter T.P.G., Rahimi R., Hambright P., Bommer J.C., Kumar M., Neta P. Stericand inductive effects on the basicity of porphyrins and on the site of protonation ofporphyrin dianions: radiolytic reduction of porphyrins and metalloporphyrins tochlorins or phlorins // J Chem Soc Faraday Trans. 1993, Vol. 89(3). P. 495–502.107. Harriman A. Metalloporphyrin-photosensitized formation of hydrogen fromorganic and inorganic substrates // J Photochem.
1985, Vol. 29(1-2). P. 139–150.108. Tachibana Y., Moser J.E., Gratzel M., Klug D.R., Durrant J.R. Subpicosecondinterfacial charge separation in dye-sensitized nanocrystalline titanium dioxidefilms // J Phys Chem. 1996, Vol. 100(96). P. 20056–20062.109. Nazeeruddin M.K., Kay A., Rodicio I., Humphry-Baker R., Mueller E., Liska P.,Vlachopoulos N., Gratzel M. Conversion of light to electricity by cis-X 2bis(2,2’bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl -, Br-,I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes // J Am ChemSoc.
1993, Vol. 115(4). P. 6382–6390.110. Grätzel M. Conversion of sunlight to electric power by nanocrystalline dyesensitized solar cells // J Photochem Photobiol A Chem. 2004, Vol. 164. P. 3–14.111. Urbani M., Nazeeruddin M.K. Meso-substituted porphyrins for dye-sensitizedsolar cells // Chem Rev. 2014, Vol.
114 (24), P. 12330–12396.112. Walter M.G., Rudine A.B., Wamser C.C. Porphyrins and phthalocyanines in solarphotovoltaic cells // J Porphyr Phthalocyanines. 2010, Vol. 14. P. 759–792.113. Woolerton T.W., Sheard S., Chaudhary Y.S., Armstrong F.
A. Enzymes and bioinspired electrocatalysts in solar fuel devices // Energy Environ Sci. 2012, Vol. 5.P. 7470-7490.114. Mashiko T., Marchon J.-C., Musser D.T., Reed C.A., Kastner M.E., Scheidt W.R.Cytochrome c models // J Am Chem Soc. 1979, Vol. 101. P. 3653–3655.105115. Kassner R.J. Theoretical model for the effects of local nonpolar hemeenvironments on the redox potentials in cytochromes // J Am Chem Soc. 1973,Vol. 95(8). P. 2674–2677.116. Moore G.R., Williams R.J.
Structural basis for the variation in redox potential ofcytochromes. // FEBS Lett. 1977, Vol. 79(2). P. 229–232.117. Ajayi F.F., Chae, Kyoung-Yeol Kim K.J., Choi M.J., Kim I.S. Photocurrent andphotoelectrochemical hydrogen production with tin porphyrin and platinumnanowires immobilized with nafion on glassy carbon electrode // Int J HydrogenEnergy. International Association for Hydrogen Energy; 2009, Vol. 34(1). P. 110–114.118.
Pu Y.C., Wang G., Chang K. Der, Ling Y., Lin Y.K., Fitzmorris B.C., Liu C.M., LuX., Tong Y., Zhang J.Z., Hsu Y.J., Li Y. Au nanostructure-decorated TiO2 nanowiresexhibiting photoactivity across entire UV-visible region for photoelectrochemicalwater splitting // Nano Lett. 2013, Vol. 13. P. 3817–3823.119. Grätzel M. Dye-sensitized solar cells // J Photochem Photobiol C Photochem Rev.2003, Vol. 4.
P. 145–153.120. Semiconductor photocatalysis: principles and applications // Ed. Horst Kisch.Weinheim. «Wiley-VCH». 2015. 264 p.121. Photocatalytic semiconductors. Synthesis, characterization, and environmentalapplications // Eds. Hernández-Ramírez A., Medina-Ramírez I. Mexico.«Springer». 2015. 289 p.122. Tanaka A., Sakaguchi S., Hashimoto K., Kominami H. Preparation of Au/TiO2 withmetal cocatalysts exhibiting strong surface plasmon resonance effective forphotoinduced hydrogen formation under irradiation of visible light // ACS Catal.2013, Vol. 3. P. 79–85.123.