Диссертация (1150084), страница 17
Текст из файла (страница 17)
Tran P.D., Xi L., Batabyal S.K., Wong L.H., Barber J., Chye Loo J.S. Enhancingthe photocatalytic efficiency of TiO2 nanopowders for H2 production by using nonnoble transition metal co-catalysts // Phys Chem Chem Phys. 2012, Vol. 14. P.11596-11599.124. Zhang Z., Wang Z., Cao S., Xue C. Au/Pt nanoparticle-decorated TiO2 nanofiberswith plasmon-enhanced photocatalytic activities for solar-to-fuel conversion // J.Phys. Chem. C. 2013, 117 (49), P. 25939–25947.106125.
Asahi R., Morikawa T., Ohwaki T., Aoki K., Taga Y. Visible-light photocatalysis innitrogen-doped titanium oxides. // Science. 2001, Vol. 293(2001). P. 269–271.126. Kosowska B., Mozia S., Morawski A.W., Grzmil B., Janus M., Kałucki K. Thepreparation of TiO2-nitrogen doped by calcination of TiO2·xH2O under ammoniaatmosphere for visible light photocatalysis // Sol Energy Mater Sol Cells. 2005,Vol. 88. P. 269–280.127. Cho Y., Choi W. Visible light-induced reactions of humic acids on TiO 2 // JPhotochem Photobiol A Chem.
2002, Vol. 148. P. 129–135.128. Zaleska A., Górska P., Sobczak J.W., Hupka J. Thioacetamide and thiourea impacton visible light activity of TiO2 // Appl Catal B Environ. 2007, Vol. 76. P. 1–8.129. Багоцкий В.С. Основы электрохимии // М. «Химия». 1988. 400 p.130. Subbaraman R., Tripkovic D., Strmcnik D., Chang K.-C., Uchimura M., PaulikasA.P., Stamenkovic V., Markovic N.M. Enhancing hydrogen evolution activity inwater splitting by tailoring Li+-Ni(OH)2-Pt interfaces // Science. 2011, Vol.334(6060). P. 1256–1260.131. Danilovic N., Subbaraman R., Strmcnik D., Chang K.-C., Paulikas A.P.,Stamenkovic V.R., Markovic N.M.
Enhancing the alkaline hydrogen evolutionreaction activity through the bifunctionality of Ni(OH)2/Metal Catalysts // AngewChemie. 2012, Vol. 124(50). P. 12663–12666.132. Дэвис С., Джеймс А. Электрохимический словарь // М. «Мир». 1979. 288 p.133.
Kuo J.T.W., Kim B.J., Hara S.A., Lee C.D., Gutierrez C.A., Hoang T.Q., Meng E.Novel flexible parylene neural probe with 3D sheath structure for enhancing tissueintegration // Lab Chip. 2013, Vol. 13(4). P. 554–561.134. Trasatti S. Work function, electronegativity, and electrochemical behaviour ofmetals: III. Electrolytic hydrogen evolution in acid solutions // J Electroanal ChemInterfacial Electrochem. 1972, Vol.
39(1). P. 163–184.135. Wang J., Zhang X.-B., Wang Z.-L., Wang L.-M., Xing W., Liu X. One-step and rapidsynthesis of “clean” and monodisperse dendritic Pt nanoparticles and their highperformance toward methanol oxidation and p-nitrophenol reduction // Nanoscale.2012, Vol. 4. P. 1549-1552.107136. Formo E., Peng Z., Lee E., Lu X., Yang H., Xia Y. Direct oxidation of methanol onPt nanostructures supported on electrospun nanofibers of anatase // J Phys ChemC.
2008, Vol. 112. P. 9970–9975.137. Wang J., Swain G.M. Fabrication and evaluation of platinum/diamond compositeelectrodes for electrocatalysis // J Electrochem Soc. 2003, Vol. 150. P. E24-E32.138. Neyerlin K. C., Gu W.; Jorne J. & Gasteiger H. A. Study of the exchange currentdensity for the hydrogen oxidation and evolution reactions // J.
Electrochem. Soc.2007, Vol. 154. P. B631–B635.139. Nørskov J.K., Bligaard T., Logadottir A., Kitchin J.R., Chen J.G., Pandelov S.,Stimming U. Trends in the exchange current for hydrogen evolution // JElectrochem Soc. 2005, Vol. 152. P. J23-J26.140. Bockris J.O.M., Ammar I.A., Huq A.K.M.S. The mechanism of the hydrogenevolution reaction on platinum, silver and tungsten surfaces in acid solutions // JPhys Chem. 1957, Vol. 61(7).
P. 879–886.141. McKone J.R., Warren E.L., Bierman M.J., Boettcher S.W., Brunschwig B.S., LewisN.S., Gray H.B. Evaluation of Pt, Ni, and Ni–Mo electrocatalysts for hydrogenevolution on crystalline Si electrodes // Energy Environ Sci. 2011, Vol. 4. P. 35733583.142. Mann R.F., Thurgood C.P. Evaluation of Tafel–Volmer kinetic parameters for thehydrogen oxidation reaction on Pt(110) electrodes // J Power Sources. 2011, Vol.196(10). P. 4705–4713.143. Walter M.G., Warren E.L., McKone J.R., Boettcher S.W., Mi Q., Santori E.A,Lewis N.S. Solar water splitting cells // Chem Rev.
2010, Vol. 110. P. 6446–6473.144. Ellis C.D., Gilbert J.A., Murphy W.R., Meyer T.J. Electrocatalytic oxidation ofchloride to chlorine based on polypyridine complexes of ruthenium // J Am ChemSoc. 1983, Vol. 105(4). P. 4842–4843.145. Olijve L.L.C., How E.N.W., Bhadbhade M., Prasad S., Colbran S.B., Zhao C.,Thordarson P. Structural, electrochemical and photochemical investigation of thewater-solubletin(IV)tetrakis(2-N-hydroxyethyl-4-pyridinium)porphyrinphotocatalyst // J Porphyrins Phthalocyanines. 2011, Vol.
15. P. 1345–1353.108146. McDaniel D.H., Brown H.C. An extended table of Hammett substitutent constantsbased on the ionization of substituted benzoic acids // J Org Chem. 1958, Vol. 23.P. 420–427.147. Kruk M.M., Braslavsky S.E. Structural volume changes upon triplet formation ofwater-soluble porphyrins depend on the resonant effect of the substituents. //Photochem Photobiol Sci. 2012, Vol. 11.
P. 972–978.148. Fuhrhop J.-H. The reactivity of the porphyrin ligand // Angew Chemie Int EdEnglish. 1974, Vol. 13(5). P. 321–335.149. Inhoffen H.H., Jäger P., Mählhop R., C.-D. M. Elektrochemische reduktionen anporphyrinen und chlorinen, IV // Liebigs Ann Chem. 1967, Vol. 704. P. 188–207.150. Yin X., Tan W., Zhang J., Weng Y., Xiao X., Zhou X., Li X., Lin Y. The effectmechanism of 4-ethoxy-2-methylpyridine as an electrolyte additive on theperformance of dye-sensitized solar cell // Colloids Surfaces A Physicochem EngAsp.
2008, Vol. 326. P. 42–47.151. Leonhardt H., Weller A. Elektronenübertragungsreaktionen des angeregtenPerylens // Berichte der Bunsengesellschaft für Phys Chemie. 1963, Vol. 67(8). P.791–795.152. Ceroni P., Balzani V.. Photoinduced energy and electron transfer processes // Theexploration of supramolecular systems and nanostructures by photochemicaltechniques / Ed. Ceroni P. Dordrecht.
«Springer Netherlands». 2012. p. 21–39.153. Zhang Z.Y., Li A.R., Cao S.W., Bosman M., Li S.Z., Xue C. Direct evidence ofplasmon enhancement on photocatalytic hydrogen generation over Au/Ptdecorated TiO2 nanofibers // Nanoscale. 2014, Vol. 6. P. 5217–5222.154. Fleischer E.B., Palmer J.M., Srivastava T.S., Chatterjee a. Thermodynamic andkinetic properties of an iron-porphyrin system. // J Am Chem Soc.
1971, Vol.93(1). P. 3162–3167.155. Pasternack R.F., Huber P.R., P B., Engasser G., Francesconi L., Gibbs E., FasellaP., Cerio Venturo G. On the aggregation of meso-substituted water-solubleporphyrins // J Am Chem Soc. 1971, Vol. 669(1968). P. 4511–4517.156. Oppelt K.T., Wöß E., Stiftinger M., Schöfberger W., Buchberger W., Knör G.Photocatalytic reduction of artificial and natural nucleotide co-factors with a109chlorophyll-like tin-dihydroporphyrin sensitizer // Inorg Chem. 2013, Vol. 52. P.11910–11922.157. Liu X., Koposova E., Offenhäusser A., Mourzina Y. Self-assembly of platinumnanoparticles and coordination-driven assembly with porphyrin // RSC Adv. 2015,Vol.
5. P. 86934–86940.158. Wang Z., Lybarger L.E., Wang W., Medforth C.J., Miller J.E., Shelnutt J. A.Monodisperseporphyrinnanospheressynthesizedbycoordinationpolymerization // Nanotechnology. 2008, Vol. 19. P. 1-6.159. Sun X., Dong S., Wang E. Coordination-induced formation of submicrometerscale, monodisperse, spherical colloids of organic-inorganic hybrid materials atroom temperature // J Am Chem Soc. 2005, Vol. 127.
P. 13102–13103.160. Delmarre D., Veret-Lemarinier A.V., Bied-Charreton C. Spectroscopic propertiesof Sn(IV) tetrapyridyl and tetramethylpyridinium porphyrins in solution and insol-gel matrices // J Lumin. 1999, Vol. 82. P. 57–67.161. Serpone N., Salinaro A. Terminology, relative photonic efficiencies and quantumyields in heterogeneous photocatalysis. Part I: Suggested protocol // Pure ApplChem. 1999, Vol.
71(2). P. 303-320.162. Zhang L., Lu Y., Du Y., Yang P., Wang X. Synthesis and photocatalytic hydrogenevolution of meso-tetrakis(p-sulfonatophenyl)porphyrin functionalized platinumnanocomposites // J Porphyrins Phthalocyanines. 2010, Vol. 14. P. 540-546.163. Zhu M., Lu Y., Du Y., Li J., Wang X., Yang P. Photocatalytic hydrogen evolutionwithout an electron mediator using a porphyrin–pyrene conjugate functionalizedPt nanocomposite as a photocatalyst // Int.
J. Hydrogen Energy. 2011, Vol. 36(7).P. 4298-4304.164. Natali M., Argazzi R., Chiorboli C., Iengo E., Scandola F. Photocatalytic hydrogenevolution with a self-assembling reductant–sensitizer–catalyst system // Chem.Eur. J. 2013, Vol. 19(28). P. 9261-9271.165. Hoebeke M., Damoiseau X., Schuitmaker H.J., Van de Vorst A. Fluorescence,absorption and electron spin resonance study of bacteriochlorin a incorporationinto membrane models // Biochim Biophys Acta - Biomembr. 1999, Vol. 1420(12). P.
73–85.110166. Kobayashi M., Akiyama M., Kano H., Kise H. Spectroscopy and structuredetermination // Chlorophylls and bacteriochlorophylls biochemistry, biophysics,functions and applications / Ed. Grimm B., Porra R.J., Rüdiger W., Scheer H.Dordrecht. «Springer Netherlands». 2006. p. 79–94.167. Segawa H., Shimidzu T., Honda K. Control of π-radical anion state of porphyrinwith a polymer matrix // Polym J. 1988, Vol. 20(6). P. 441–446.168. Closs G.L., Closs L.E. Negative ions of porphyrin metal complexes // J Am ChemSoc. 1963, Vol. 85(6). P. 818–819.169. Bard A.J., Stratmann M., Fujishima A. Nonsolar energy applications // In: BardA.J., Stratmann M., Licht S., editors. Encyclopedia of electrochemistry, Volume 6,Semiconductor electrodes and photoelectrochemistry.
Weinheim: Wiley-VCH;2002. p. 608..