Диссертация (1150039), страница 19
Текст из файла (страница 19)
Реакционную смесь разделяли с помощью колоночной хроматографии (SiO2,элюент гексан/ацетон 20:1→2:1): в результате был выделен изохинолиндион 29а(126 мг, 71% : смесь двух диастереомеров 7 : 1).121(3S*,4aR*,8aS*)-8-Гидрокси-2-(4-метоксифенил)-8a-метил-3-фенил-3,4,4a,5тетрагидроизохинолин-1,6(2H,8aH)-дион(29а).Бесцветноекристаллическоевещество, т.пл.
191-193 °С; ИК спектр (пленка, ν/см-1): 3463, 2944, 2836, 1708, 1630,1608, 1557, 1508, 1456, 1425; 1411, 1243, 1216; Спектр 1Н ЯМР (400 МГц, CDCl3), δ,м.д.: 12.22 (с, 1H, OH), 6.98-7.35 (м, 5H, Ph), 6.85 (д, J = 8.9 Гц, 2H, PMP), 6.73 (д, J= 8.9 Гц, 2H, PMP), 5.48 (с, 1H, CH=), 4.90 (дд, J = 10.9, 6.7 Гц, 1H, C3H), 3.70 (s, 3H,OMe), 2.88-2.98 (м 1H, CH), 2.05-2.55 (м, 4H, 2CH2), 1.91 (с, 3H, OMe); Спектр 13СЯМР (101 МГц, CDCl3), δ, м.д.: 196.1, 180.3, 176.6 (2CO+HO-C=C), 158.6, 139.4,131.7, 128.9, 128.5, 128.4, 127.3, 114.3, 105.3 (2Ar+C=), 65.9, 55.3, 41.8, 38.7, 35.8,33.7, 21.4 (OMe+С-четв.+2СH+2CH2+Me); HRMS (ESI) вычислено для C23H23NO4[M+H]+ 378.1700, найдено 378.1696.122СПИСОК СОКРАЩЕНИЙ И УСЛОВНЫХ ОБОЗНАЧЕНИЙAc2Oуксусный ангидридBINOL1,1'-Би-2-нафтолDBU1,8-Диазабициклоундес-7-енPTSAП-ТолуолсульфокислотаTsтозил (пара-толуолсульфонил)HRMSмасс-спектрометрия высокого разрешенияТСХтонкослойная хроматографияMCRмультикомпонентная реакцияTBSтрет-бутилдиметилсилилEWGэлектрон-акцепторная группа123СПИСОК ЛИТЕРАТУРЫ[1] Salzmann, T.
N.; Ratcliffe, R. W.; Christensen, B. G.; Bouffard, F. A. Astereocontrolled synthesis of (+)-thienamycin // J. Am. Chem. Soc. – 1980. – Vol. 102. –P. 6161-6163.[2] Gillingham D.; Fei N. Catalytic X-H insertion reactions based on carbenoids //Chem. Soc. Rev. – 2013. – Vol. 42. – P. 4918-4931.[3] Hili, R.; Yudin, A. K. Making Carbon-Nitrogen Bonds in Biological and ChemicalSynthesis // Nat. Chem. Biol. – 2006. – Vol. 2. – P. 284-287.[4] Ricci, A. Amino Group Chemistry: From Synthesis to the Life Sciences, 1st ed.,Wiley-VCH: Weinheim, Germany, 2007.[5] Shin, K.; Kim, H.; Chang, S.
Transition-Metal-Catalyzed C-N Bond FormationReactions Using Organic Azides as the Nitrogen Source: A Journey for the Mild andCersatile C-H Amination // Acc. Chem. Res. – 2015. – Vol. 48. – P. 1040-1052.[6] Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Catalytic Methods for OrganicSynthesis with Diazo Compounds: From Cyclopropanes to Ylides, John Wiley & Sonsinc.: New York, USA, 1998.[7] Hansen, S. R.; Spangler, J. E.; Hansen, J. H.; Davies, H. M. L. Metal-Free N-HInsertions of Donor/Acceptor Carbenes // Org. Lett.
– 2012. – Vol. 14. – P. 4626-4629.[8] Yudin, A. Catalyzed Carbon-Heteroatom Bond Formation // Wiley-VCH, Weinheim,2010.[9] Beletskaya, I. P. Transition-metal-catalyzed Reactions of Carbon-heteroatom BondFormation by Substitution and Addition Processes // Pure Appl. Chem. – 2005. – Vol.77. – P. 2012-2027.[10] Chen, J.-R.; Hu, X.-Q.; Lu, L.-Q.; Xiao, W.-J. Formal [4+1] Annulation Reacctionsin the Synthesis of Carbocyclic and Heterocyclic Systems // Chem.
Rev. – 2015. – Vol.115. – P. 5301-5365.124[11] Padwa, A. Domino Reactions of Rhodium (II) Carbenoids for Alkaloid Synthesis //Chem. Soc. Rev. – 2009. – Vol. 38. – P. 3072-3081.[12] Dawande, S. G.; Kanchupalli, V.; Lad, B. S.; Rai, J.; Katukojvala, S. SynergisticRhodium (II) Carboxylate and Bronsted Acid Catalyzed Multicomponent Reactions ofEnalcarbenoids: Direct Synthesis of α-Pyrrolylbenzylamines // Org. Lett.
– 2014. – Vol.16. – P. 3700-3703.[13] Hong, D.; Zhu, Y.; Li, Y.; Lin,, X.; Lu, P.; Wang, Y. Three-Component Synthesis ofPolysubstituted Pyrroles from α-Diazoketones, Nitroalkenes, and Amines // Org. Lett. –2011. – Vol. 13. – P. 4668-4671.[14] DeAngelis, A.; Taylor, M. T.; Fox, J. M. Unusually Reactive and Selective CarbonylYlides for Three-Component Cycloaddition Reactions // J. Am. Chem.
Soc. – 2009. –Vol. 131. – P. 1101-1105.[15] Galliford, C. V.; Scheidt, K. A. Catalytic Multicomponent Reactions for theSynthesis of N-Aryl Trisubstituted Pyrroles // J. Org. Chem. – 2007. – Vol. 72. – P. 18111813.[16] Guo, X.; Hu, W. Novel Multicomponents Reactions via Trapping of Protic OniumYlides with Electrophiles // Acc. Chem. Res. – 2013. – Vol. 46. – P. 2427-2440.[17] Rosenberg, M. L., Krivokapic, A.; Tiset, M. Highly cis-Selective Cyclopropanationswith Ethyl Diazoacetate Using a Novel Rh(I) Catalyst with a Chelating N-HeterocyclicIminocarbene Ligand // Org.
Lett. – 2009. – Vol. 11. – P. 547-550.[18] Rosenberg, M. L.; Viasana, K.; Gupta, N. S.; Wragg, D.; Tilset, M. Highly cisSelective Rh(I)-Catalyzed Cyclopropanation Reactions // J. Org. Chem. – 2011. – Vol.76. – P. 2465-2470.[19] Rosenberg, M. L.; Langseth, E.; Krivokapic, A.; Gupta, N. S.; Tilset, M.Investigation of Ligand Steric Effects on a Highly cis-selective Rh(I) CyclopropanationCalalyst // New. J. Chem. – 2011. – Vol. 35. – P. 2306-2313.[20] Rosenberg, M. L.; Krapp, A.; Tilset, M. On the Mechanism of CyclopropanationReactions Catalyzed by a Rhodium (I) Catalyst Bearing a Chelating Imine-125Functionalized NHC Ligand: A Computational Study // Organometallics.
– 2011. – Vol.30. – P. 6562- 6571.[21] Chan, W.-W.; Lo, S.-F.; Zhou, Z.; Yu, W.-Y. Rh-Catalyzed IntermolecularCarbenoid Functionalization of Aromatic C-H Bonds by α-Diazomalonates // J. Am.Chem. Soc. – 2012. – Vol. 134. – P. 13565-13568.[22] Hyster, T. K., Ruhl, K. E., Rovis, T. A Coupling of Benzamides andDonor/Acceptor Diazo Compounds To Form γ-Lactams via Rh(III)-Catalyzed C-HActivation // J. Am. Chem. Soc. – 2013. – Vol. 135. – P.5364-5367.[23] Shi, Z.; Koester, D.
C.; Boultadakis-Arapinis, M.; Glorius, F. Rh(III)-CatalyzedSynthesis of Multisubstituted Isoquinoline and Pyridine N-Oxides from Oximes andDiazo Compounds // J. Am. Chem. Soc. – 2013. – Vol. 135. – P. 12204-12207.[24] Yu, X.; Yu, S.; Xiao, J.; Wan, B.; Li, X. Rhodium(III)-Catalyzed Azacycle-DirectedIntermolecular Insertion of Arene C-H Bonds into α-Diazocarbonyl Compounds // J.Org. Chem. – 2013. – Vol. 78. – P.
5444-5452.[25] Shi, J.; Yan, Y.; Xu, H.; Yi, W. Rhodium(III)-catalyzed C2-selective CarbenoidFunctionalization and Subsequent C7-alkenylation of Indoles // Chem. Commun. – 2014.– Vol. 50. – P. 6483-6486.[26] DeAngelis, A.; Dmitrenko, O.; Fox, J. M. Rh-Catalyzed Intermolecular Reactions ofCyclic α-Diazocarbonyl Compounds with Selectivity over Tertiary C-H Bond Migration// J.
Am. Chem. Soc. – 2012. – Vol. 134. – P. 11035-11043.[27] Candeias, N. R.; Gois, P. M. P.; Carlos, A. M. A. Rh(II)-Catalyzed IntramolecularC-H Insertion of Diazo Substrates in Water: Scope and Limitations // J. Org. Chem. –2006. – Vol. 71. – P. 5489-5487.[28] Chamni, S.; He, Q.-L.; Dang, Y.; Bhat, S.; Liu, J. O.; Romo, D. Diazo Reagents withSmall Steric Footprints for Simultaneous Arming/SAR Studies of Alcohol-ContainingNatural Products via O-H Insertion // ACS Chem.
Biol. – 2011. – Vol. 6. – P. 1175-1181.[29]Lian,Y.;Davies,H.M.L.Rh2(S-biTISP)2-CatalyzedAsymmetricFunctionalization of Indoles and Pyrroles with Vinylcarbenoids // Org. Lett. – 2012. –Vol. 14. – P. 1934-19387.??126[30] Bonderoff, S.; Padwa, A. Rh(II)-Catalyzed Reactions of Differentially SubstitutedBis(diazo) Functionalities // Org. Lett. – 2013. – Vol. 15. – P. 4114-4117.[31] Gillinfham, D.; Fei, N.; Catalytic X-H Insertion Based on Carbenoids // Chem. Soc.Rev. – 2013.
– Vol. 42. – P. 4918-4931.[32] Muller, P.; Allenbach, Y. F.; Chappellet, S.; Ghanem, A. AsymmetricCyclopropanations and Cycloadditions of Dioxocarbenes // Synthesis. – 2006. – P. 16891696.[33] Lindsay, V. N. G.; Charette, A.
B. Design and Synthesis of Chiral HeterolepticRhodium(II) Carboxylate Catalysts: Experimental Investigation of Halogen BondRigidification Effects in Asymmetric Cyclopropanation // ACS Catal. – 2012. – Vol. 2. –P. 1221-1225.[34] Trindade, A. F.; Coelho, J. A.; Afonso, C. A. M.; Veiros, L. F.; Gois, P. M. P. FineTuning of Dirhodium(II) Complexes: Exploring the Axial Modification // ACS Catal.
–2012. – Vol. 2. – P. 370-383.[35] Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Catalytic Methods for OrganicSynthesis with Diazo Compounds: From Cyclopropanes to Ylides // Wiley, New-York,1998.[36] Hansen, J.; Davies, H. M. L. High Symmetry Dirhodium(II) PaddlewheelComplexed as Chiral Catalysts // Coord. Chem. Rev.
– 2008. – Vol. 252. – P. 545-555.[37] Aller, E.; Buck, R. T.; Drysdale, M. J.; Ferris, L.; Haigh, D.; Moody, C. J.; Pearson,N. D.; Sanghera, J. B. N-H Insertion Reactions of Rhodium Carbenoids. Part 1.Preparation of α-Amino Acid and α-Aminophosphoric Acid Derivatives // J. Chem. Soc.Perkin. Trans.
1. – 1996. – P. 2879-2884.[38] Osipov, S. N.; Sewald, N.; Kolomiets, A. F.; Fokin, A. V.; Burger, K. Synthesis ofα-Trifluoromethyl Substituted α-Amino Acid Derivatives from Methyl 3,3,3-Trifluoro2-diazopropionate // Tetrahedron Lett. – 1996. – Vol. 37. – P. 615-618.[39] Yang, M.; Wang, X.; Li, H.; Livant, P.
A New Route To Hindered Tertiary Amines// J. Org. Chem. – 2001. – Vol. 66. – P. 6729-6733.127[40] Yang, M.; Albrecht-Schmitt, T.; Cammarata, V.; Livant, P.; Makhanu, D. S.;Sykora, R.; Zhu, W. Trialkylamines More Planar at Nitrogen Than Triisopropylamine inthe Solid State // J. Org. Chem. – 2009. – Vol. 74. – P. 2671-2678.[41] He, J.-Y.; Song, X.-Q.; Yan, H.; Zhong, E.-G.