Диссертация (1150039), страница 22
Текст из файла (страница 22)
Med. Chem. –1993. – Vol. 36. – P. 3397-3408.[128] Hirai, Y.; Terada, T.; Atsushi, H.; Yamazaki, T. A Stereocontrolled Synthesis of(±)-Emetine and (±)-Protoemetinol by Intramolecular Michael Reaction // Chem. Pharm.Bull. – 1988. – Vol. 36. – P. 1343-1350.[129] Chavan, S. P.; Rasapalli, S. A Synthesis of Camptothecin // Tetrahedron Lett. –2004. – Vol. 45.
– P. 3113-3115.[130] Nikolaev, V. A.; Ivanov, A. V.; Shakhmin, A. A.; Sieler, R.; Rodina, L. L. TheFirst Examples of Cycloadditions of 2-Diazo-1,3-dicarbonyl Compounds to AromaticThioketones // Tetrahedron Lett. – 2012. – Vol. 53. – P. 3095-3099.[131] Popik, V. V.; Nikolaev, V. A. Stereochemistry and Thermal Stability of DiazoDiketones // J. Chem. Soc. Perkin.
Trans. 2. – 1993. – P. 1791-1793.[132] Tidwell, T. T. Ketene Chemistry After 100 Years. Ready for New Century // Eur. J.Org. Chem. – 2006. – P. 563-576.137[133] Hao, X.; Li, X.; Li, W.; Fei, T.; Chu, Y.; Zhao, X.; Lin, L.; Feng, X. Chiral LewisAcid Catalyzed Asymmetric Cycloadditions of Disubstituted Ketenes for the Synthesis ofβ-Lactones and δ-Lactones // Org. Lett. – 2014. – Vol.
16. – P. 134-137.[134] Lv, H.; Chen, X.-Y.; Sun, L.-H.; Ye, S. Enantioselective Synthesis of Indole-fusedDihydropyranones via Catalytic Cycloaddition of Ketenes and 3-Alkylenyloxindoles // J.Org. Chem. – 2010. – Vol. 75. – P. 6973-6976.[135] Tadano, K.; Nagashima, K.; Ueno, Y.; Ogawa, S. Tandem Intramolecular MichaelAddition/Aldol Condensation or Acylation Applied to D-Glucose-derived Substrates:Preparation of Enantiomeric Octahydronaphtalenone Derivatives Equipped with C- andO-Functionalities // J. Org. Chem. – 1992.
– Vol. 57. – P. 4496-4506.[136] Somai Magar, K. B.; Lee, Y. R. Synthesis of Diverse Indene Derivatives from 1Diazonaphtalen-2(1H)-ones via Thermal Cascade Reactions // Org. Lett. – 2013. – Vol.15. – P. 4288-4291.[137] Presset, M.; Coqueral, Y.; Rodriguez, J. Microwave-Assisted Domino andMulticomponent Reactions with Cyclic Acylketenes: Expeditious Syntheses ofOxazinones and Oxazindiones // Org. Lett. – 2009. – Vol. 11. – P. 5706-5709.[138] Presset, M.; Coquerel, Y.; Rodriguez, J.
Periselectivity Switch of Acylketenes inCycloadditions with 1-Azadienes: Microwave-Assisted Diastereoselective DominoThree-Component Synthesis of α-Spiro-δ-Lactams // Org. Lett. – 2010. – Vol. 12. – P.4212-4215.[139] Galvez, J.; Castillo, J.-C.; Quiroga, J.; Rajzmann, M.; Rodriguez, J.; Coquerel, Y.Divergent Chemo-, Regio-, and Diastereoselective Normal Electron-Demand PovarovType Reactions with α-Oxo-ketene Dienophiles // Org.
Lett. – Vol. 16. – P. 4126-4129.[140] Pandit, R. P.; Lee, Y. R.Novel One-pot Synthesis of Diverse γ,δ-Unsaturated βKetoesters by Thermal Cascade Reactions of Diazodicarbonyl Compounds and EnolEthers: Transformation into Substituted 3?5-Diketoesters // Org. Biomol. Chem. – 2014.– Vol. 12. – P. 4407-4411.138[141] Tomioka, H.; Hayashi, N.; Asano, T.; Izawa, Y. Mechanism of the Photochemicaland Thermal Wolff Rearrangement of 2-Diazo-1,3dicarbonyl Compounds // Bull. Chem.Soc. Japan. – 1983. – Vol. 56. – P. 758-761.[142] Allen, A. D.; Tidwell, T. T. Ketenes and Other Cumulenes as ReactiveIntermediates // Chem. Rev. – 2013. – Vol. 113.
– P. 7287-7342.[143] Tidwell, T. T. The First Century of Ketenes (1905-2005): The Birth of a VersatileFamily of Reactive Intermediates // Angew. Chem. Int. Ed. – 2005. – Vol. 44. – P. 57785785.[144] Snider, B. B.; Niwa, M. Intramolecular Cycloadditions of Arylketenes withAlkanes. Reaction of 5-Arylbicyclo[3.2.0]heptan-6-ones // Tetrahedron Lett. – 1988. –Vol. 29. – P. 3175-3178.[145] Ji, X.; Wang, Q.; Goeke, A. An Unprecedented Stereoselective [2+2]Cycloreversion Cyclobutanones // Chem. Commun. – 2010.
– Vol. 46. – P. 8845-8847.[146] Ji, X.; Li, Z.; Wang, Q.; Goeke, A. Alkoxide-induced Ring Opening of Bicyclic 2Vinylcyclobutanones: a Convenient Synthesis of 2-Vinyl-substituted 3-Cycloalkene-1carboxylic Esters // Beilstein J. Org. Chem. – 2012. – Vol. 8. – P.
650-657.[147] Matsumoto, T.; Hamuram T.; Miyamoto, M.; Suzuki, K. Base--promoted RingExpansionof2-Alkoxy-2-vinylbenzocyclobutenolintoSubstitutedNaphthaleneDerivatives // Tetrahedron Lett. – 1998. – Vol. 39. – P. 4853-4856.[148] Azuma, T.; Takemoto, Y.; Takasu, K. Formal (3+3) Cycloaddition of Silyl EnolEthers Catalyzed by Triflic Imide: Domino Michael Addition-Claisen CondensationAccompanied with Isomerization of Silyl Enol Ethers // Chem. Pharm. Bull. – 2011. –Vol. 59.
– P. 1190-1193.[149] Rath, J.-P.; Kinast, S.; Maier, M. E. Synthesis of the Fully Functionalized CoreStructure of the Antibiotic Abyssomicin C // Org. Lett. – 2005. – Vol. 7. – P. 3089-3092.[150] Hinterding, K.; Singhanat, S.; Oberer, L. Stereoselective Synthesis of PolyketideFragments using a Novel Intramolecular Claisen-like Condensation/Reduction Sequence// Tetrahedron Lett. – 2001. – Vol.
42. – P. 8463-8465.139[151] Dolomanov, O.V. OLEX2: A complete structure solution, refinement and analysisprogram / O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, H. Puschmann //J. Appl. Cryst. – 2009. – Vol. 42. – P. 339-341[152] Johnson, C. K.
ORTEP II / Report ORNL-5138, Oak Ridge National Laboratory,Oak Ridge, TN, 1976.[153] Shulze, B.; Nikolaev, Vs. V.; Hening, L.; Rodina, L. L.; Sieler, J.; Nikolaev, V. A.Chemistry of Diazocarbonyl Compounds: XX. Chemoselective O-Alkylation of 3(2H)Oxoisothiazole-1,1-dioxises // Russ. J. Org. Chem. – 2004. – Vol. 40. – P. 740-746.[154] Bagley, M. C.; Buck, R. T.; Hind, S. L.; Moody, C.
J. Synthesis of FunctionalisedOxazoles and Bis-Oxazoles // J. Chem. Soc., Perkin. Trans. 1. – 1998. – P. 591-600.[155] Nikolaev, V. A.; Popik, V. V. Conformational Equilibrium in the Series of 2Diazo-1,3-diketones // J. Org. Chem. USSR (Engl. Trans.) – 1989.
– Vol. 25. – P. 203204.[156] Presset, M.; Mailhol, D.; Coquerel, Y.; Rodriguez, J. Diazo-transfer Reactions to1,3-Dicarbonyl Compounds with Tosyl Azide // Synthesis. – 2011. – P. 2549-2552.[157] Lombardo, L. A Versatile Route to Mixed Vinylketene Acetals: Use of 1-tButyldimethylsiloxy-1-ethoxy Butadiene in Cyclohexenone Synthesis // TetrahedronLett. – 1985.
– Vol. 26. – P. 381-384.1409.49.08.68.27.87.47.06.66.25.85.45.04.6f1 (мд)4.23.83.43.02.62.26.032.062.522.192.172.642.621.211.231.212.061.092.053.873.722.522.502.492.472.603.682.192.173.023.012.982.972.662.552.53H 3C1.81.41.191.252.12.051.092.21.032.33.203.023.012.982.972.41.032.52.002.993.063.112.72.6f1 (мд)4.104.094.084.072.81.025.292.91.933.06.686.666.406.383.12.023.21.912.147.337.317.267.157.133.31.031.033.243.233.223.203.193.192.642.62YMEA16HY. MedvedevCH3H 3CONOO1.0OOO0.6CH3OCH3-92.00.2YMEA16CStd Carbon experimentCH3H 3COONOOH3COCH3OCH377.4277.0076.58O8580757055504540353015.4914.1228.456043.1639.1735.066555.5052.8952.5276.4395 90f1 (мд)60.67180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 10065.38115.05114.15142.68141.25139.39151.91171.31170.17169.84128.13125.88-92520151057.8 7.6 7.4 7.2 7.06.66.25.85.45.04.64.23.8f1 (мд)3.43.02.62.21.81.41.182.5f1 (мд)2.31.01.161.221.201.242.76.373.471.111.044.143.651.761.742.542.422.392.372.352.662.652.622.612.602.58H3C1.251.262.91.761.743.11.113.32.542.422.392.582.563.51.042.652.622.612.60CH33.77O4.143.773.91CH32.782.82O4.144.134.124.11OO2.00N4.944.936.626.61CH30.975.307.26O3.617.087.067.337.31H3C1.801.97YMEA17HY.
MedvedevOO2.11.90.61.7-90.277.3277.0076.68YMEA17CY. MedvedevCH3H3 COONOOH3 COCH3OCH3O17016516015514514013012512011511010510095 90f1 (мд)8580757055504540353015.3514.1628.436035.726544.2141.8178.5313555.2652.44113.57119.56142.83139.65138.2315060.6517564.46180153.20171.42170.53169.69127.96126.51-9252015107.57.06.5O6.0O5.55.05.855.855.845.815.815.805.715.705.695.676.906.856.846.846.616.616.596.586.506.487.377.367.367.347.264.5f1 (мд)4.03.53.02.52.03.750.692.061.271.251.233.333.323.323.313.313.303.303.293.293.283.263.263.233.223.213.213.193.193.183.173.171.793.56121.93123.73CH33.00O4.174.154.134.11O1.990.89N0.880.870.950.990.875.01H3C1.5H3C170ON160150O140OO130CH31212011010090f1 (мд)8070605040302014.3436.1833.2155.8353.5660.47112.08112.05110.56128.92127.98127.17126.09124.45138.04136.59144.04155.73175.129.08.58.07.57.06.56.05.55.04.5f1 (мд)4.03.53.02.52.08.041.121.221.081.092.652.642.612.602.192.162.152.122.082.072.072.062.042.042.032.031.821.791.761.721.291.281.261.261.251.233.723.703.65O3.640.952.004.304.294.284.284.274.264.164.144.144.134.124.11O1.981.005.035.025.004.996.746.71O1.99N1.97H3 C4.754.937.597.577.507.487.467.417.397.377.347.267.227.197.177.167.157.147.127.026.99SEMSEM, 697, BF = 400.13 MHz, Solvent - CDCl3, 04 Mar 2015 T=296 KH3 COOOCH3-271.51.00.50.0SEMcSEMc, 697, BF = 100.612769 MHz, Solvent - CDCl3, 04 Mar 2015 T=297 KH3 CONOOOCH3H3 COO18017016014013012011010090f1 (мд)80706014.1914.0336.9436.7833.1055.26114.1166.0665.9762.0760.77140.27150135.61133.52158.07171.73170.44169.08130.59128.89128.48127.82127.76-2750403020108.58.07.57.06.56.05.55.04.54.0f1 (мд)3.53.02.52.03.643.612.452.442.412.402.272.272.262.251.991.971.951.933.903.893.953.933.933.913.914.431.50.991.021.431.461.001.45O2.812.841.951.341.031.783.180.904.404.394.417.227.20H3 CO4.445.165.155.145.137.337.407.397.387.377.356.836.817.507.427.417.52N1.661.002.042.038.682.627.447.523.75SEMSEM, 699, BF = 400.13 MHz, Solvent - CDCl3, 04 Mar 2015 T=296 KH3 COOOOCH3-27 ’1.00.50.0-0.5SEMcSEMc, 699, BF = 100.612769 MHz, Solvent - CDCl3, 04 Mar 2015 T=297 KH3 CONOOOCH3H3 COO19018017016015014013012011010090f1 (мд)80706036.6933.4932.4214.0913.8755.3263.7262.1460.50114.19135.54134.52141.06158.09171.21170.63168.69130.06128.44128.26127.72127.04-27 ’50403020108.58.07.57.06.56.05.55.04.5f1 (мд)4.03.53.02.991.031.003.221.003.403.393.383.383.363.353.343.332.752.752.742.732.712.702.692.695.105.09281.006.476.466.456.456.826.802.35N2.152.015.024.037.437.417.347.337.317.297.287.277.267.197.177.153.75SEMSEM, 726, BF = 400.13 MHz, Solvent - CDCl3, 24 Mar 2015 T=295 KOCH3OCH32.52.01.51.00.50.0SEMcSEMc, 726, BF = 100.612769 MHz, Solvent - CDCl3, 24 Mar 2015 T=296 KCH3ONOCH316015014013012011010090f1 (мд)807060504021.1333.0262.9055.36113.98127.30126.57127.50157.69164.23170141.06137.43136.94135.41133.77132.62128.51128.5677.3277.0076.68282830203.733.70SEMSEM, 719, BF = 400.13 MHz, Solvent - CDCl3, 20 Mar 2015 T=295 KOH3 COOH2.462.462.452.432.241.91CH3NOH5.4812.512.011.511.010.510.09.59.08.58.07.57.06.56.0f1 (мд)5.55.04.54.03.53.02.52.914.611.003.361.050.959.701.004.924.914.894.8812.227.267.247.237.227.137.127.116.866.846.846.746.72292.01.51.00.50.0SEMcSEMc, 719, BF = 100.612769 MHz, Solvent - CDCl3, 20 Mar 2015 T=296 KOH3 COOH77.3277.0076.68CH3NOH20019018017016015014021.3841.8038.7435.8033.67114.4265.87105.2755.27114.34127.29128.38131.65139.35158.60176.64196.08180.33128.85128.4629130120110f1 (мд)100908070605040302010.