Диссертация (1145368), страница 20
Текст из файла (страница 20)
Ò. 193, 4. Ñ. 756759.Ëàïóíîâ À. Ì. Îáùàÿ çàäà÷à îá óñòîé÷èâîñòè äâèæåíèÿ. Õàðüêîâ, 1892. [English transl.: Academic Press, NY, 1966].13.Êîëåñíèêîâ Ê., Ñóõîâ Â. Óïðóãèé ëåòàòåëüíûé àïïàðàò êàê îáúåêò àâòîìàòè÷åñêîãî óïðàâëåíèÿ. Ìîñêâà: Ìàøèíîñòðîåíèå, 1974. Ñ. 267.14.Êðàñîâñêèé Í. Òåîðåìû îá óñòîé÷èâîñòè äâèæåíèé, îïðåäåëÿåìûõ ñèñòåìîé äâóõ óðàâíåíèé // ÏÌÌ. 1952. Ò. 16(5). Ñ. 547554.15.Êðûëîâ Í., Áîãîëþáîâ Í. Ââåäåíèå â íåëèíåéíóþ ìåõàíèêó.
Êèåâ:Èçä-âî ÀÍ ÓÑÑÐ, 1937. Ñ. 353.16.Ìàëêèí È. Îá óñòîé÷èâîñòè ñèñòåì àâòîìàòè÷åñêîãîÏÌÌ. 1952. 16(4). Ñ. 495499.17.Êóçíåöîâ Í., Ëåîíîâ Ã., Ñåëåäæè Ñ. è äð.ðåãóëèðîâàíèÿ //Ïàòåíò íà èçîáðåòåíèå2449463. Ñïîñîá äëÿ îïðåäåëåíèÿ ðàáî÷èõ ïàðàìåòðîâ ñèñòåìû ôàçîâîéàâòîïîäñòðîéêè ÷àñòîòû ãåíåðàòîðà è óñòðîéñòâî äëÿ åãî ðåàëèçàöèè. 2010.18.Êóçíåöîâ Í., Ëåîíîâ Ã., Ñåëåäæè Ñ. è äð.Ïàòåíò íà èçîáðåòåíèå2523219.
Ñïîñîá äëÿ îïðåäåëåíèÿ ðàáî÷èõ ïàðàìåòðîâ ñèñòåìû öèôðîâîé ñâÿçè è óñòðîéñòâî äëÿ åãî ðåàëèçàöèè. 2012.19.Êóçíåöîâ Í., Ëåîíîâ Ã., Ñåëåäæè Ñ. è äð. Ïàòåíòíà ïîëåçíóþ ìîäåëü112555. Ìîäóëÿòîð ïàðàìåòðîâ ôàçîâîãî äåòåêòîðà. 2011.20.Ìàòðîñîâ Â., Øàëôååâ Â. Íåëèíåéíàÿ äèíàìèêà ñèñòåì ôàçîâîé ñèíõðîíèçàöèè. Í.Íîâãîðîä, 2013. Ñ. 366.21.Ïåðâîçâàíñêèé À.
Êóðñ òåîðèè àâòîìàòè÷åñêîãî óïðàâëåíèÿ. Íàóêà, 1986. Ñ. 615.Ìîñêâà:15422.Ìèëëèîíùèêîâ Â. Ì. Ôîðìóëà äëÿ ýíòðîïèè ãëàäêèõ äè- íàìè÷åñêèõ ñèñòåì // Äèôôåðåíöèàëüíûå óðàâíåíèÿ. 1976. Ò. 12, 12. Ñ. 21882192, 2300.23.Ïëèññ Â. Íåêîòîðûå ïðîáëåìû óñòîé÷èâîñòè äâèæåíèÿ â öåëîì. Ëåíèíãðàä: Èçäàòåëüñòâî Ëåíèíãðàäñêîãî óíèâåðñèòåòà, 1958. Ñ. 188.24.Ïîïîâ Å. Ðàñ÷åò íåëèíåéíûõ àâòîìàòè÷åñêèõ ñèñòåì íà îñíîâå ãàðìîíè÷åñêîé ëèíåàðèçàöèè.
Ìîñêâà: Ñóäïðîìãèç, 1959. Ñ. 48.25.Ïîïîâ Å. Òåîðèÿ íåëèíåéíûõ ñèñòåì àâòîìàòè÷åñêîãî ðåãóëèðîâàíèÿ èóïðàâëåíèÿ. Ìîñêâà: Íàóêà, 1979. Ñ. 255.Îñåëåäåö Â. Ìóëüòèïëèêàòèâíàÿ ýðãîäè÷åñêàÿ òåîðåìà. Õàðàêòåðèñòè÷åñêèå ïîêàçàòåëè Ëÿïóíîâà äèíàìè÷åñêèõ ñèñòåì // Òðóäû Ìîñêîâñêîãîìàòåìàòè÷åñêîãî îáùåñòâà. 1968.
Ò. 19. Ñ. 179210.27. Êóçíåöîâ Í., Ëåîíîâ Ã., Ñåëåäæè Ñ. è äð. Ñâèäåòåëüñòâî î ãîñóäàðñòâåí26.íîé ðåãèñòðàöèè ïðîãðàììû äëÿ ÝÂÌ 2011613388. Ïðîãðàììà äëÿ îïðåäåëåíèÿ è ìîäåëèðîâàíèÿ îñíîâíûõ õàðàêòåðèñòèê ñèñòåì ôàçîâîé àâòîïîäñòðîéêè ÷àñòîòû. 2011.28.Êóçíåöîâ Í., Ëåîíîâ Ã., Ñåëåäæè Ñ. è äð. Ñâèäåòåëüñòâî î ãîñóäàðñòâåííîé ðåãèñòðàöèè ïðîãðàììû äëÿ ÝÂÌ 2011616770.
Ïðîãðàììà äëÿ îïðåäåëåíèÿ è ìîäåëèðîâàíèÿ îñíîâíûõ õàðàêòåðèñòèê ñèñòåì Costas Loop. 2011.29.Ñåðåáðÿêîâà Í. Î ïîâåäåíèè äèíàìè÷åñêîé ñèñòåìû ñ îäíîé ñòåïåíüþ ñâîáîäû âáëèçè òåõ òî÷åê ãðàíèöû îáëàñòè óñòîé÷èâîñòè, ãäå áåçîïàñíàÿ ãðàíèöà ïåðåõîäèò â îïàñíóþ. //Èçâåñòèÿ ÀÍ ÑÑÑÐ. ÎÒÍ Ìåõàíèêà è ìà-øèíîñòðîåíèå. 1959. 2. Ñ. 178182.30. Ñþ Ä., Ìåéåð À. Ñîâðåìåííàÿ òåîðèÿ àâòîìàòè÷åñêîãî óïðàâëåíèÿ è ååïðèìåíåíèå. Ìîñêâà: Ìàøèíîñòðîåíèå, 1972.
Ñ. 576.31. Òåîðèÿ ïîêàçàòåëåé Ëÿïóíîâà è åå ïðèëîæåíèÿ ê âîïðîñàì óñòîé÷èâîñòè /Á. Áûëîâ, Ð. Âèíîãðàä, Ä. Ãðîáìàí, Í. Â.Â. Ìîñêâà: Íàóêà, 1966. Ñ. 576.15532.Öûïêèí Ç. Òåîðèÿðåëåéíûõ ñèñòåì àâòîìàòè÷åñêîãî ðåãóëèðîâàíèÿ. Ìîñêâà: Ãîñòåõèçäàò, 1955. Ñ. 456.33.34.Ùóêî Ñ. Âû÷èñëåíèå ëÿïóíîâñêèõ âåëè÷èí íà ÝÂÖÌ // Òðóäû Ãîðüêîâñêîãî èíñò. èíæ. âîäíîãî òðàíñïîðòà. 1968. Ò. 94. Ñ.
97109.Øàõãèëüäÿí Â., Ëÿõîâêèí À. Ñèñòåìû ôàçîâîé àâòîïîäñòðîéêè ÷àñòîòû. Ìîñêâà: Ñâÿçü, 1972. Ñ. 447.35.36.Øàõòàðèí Á. Èññëåäîâàíèå êóñî÷íî-ëèíåéíîéýëåêòðîíèêà. 1969. 8. Ñ. 14151424.ôàï //Ðàäèîòåõíèêà èØàõòàðèí Á. Àíàëèç ñèñòåì ñèíõðîíèçàöèè ìåòîäîì óñðåäíåíèÿ. Ðà-äèî è ñâÿçü, 1999. Ñ. 496.37.Ðîçåíâàññåð Å. Êîëåáàíèÿ íåëèíåéíûõ ñèñòåì. Ìîñêâà: Íàóêà, 1969.
Ñ. 576.38.Abarbanel H., Brown R., Kennel M. Variation of Lyapunov exponents on astrange attractor // Journal of Nonlinear Science. 1991. Vol. 1, no. 2. Pp. 175199.39.40.Abramovitch D. Lyapunov redesign of analog phase-lock loops // Communications, IEEE Transactions on. 1990. Vol. 38, no. 12. Pp. 21972202.Abramovitch D. Phase-locked loops:A control centric tutorial // AmericanControl Conf. Proc. Vol. 1.
IEEE, 2002. Pp. 115.41.Abramovitch D.Lyapunov redesign of classical digital phase-lock loops //American Control Conference, 2003. Proceedings of the 2003. Vol. 3. IEEE, 2003. Pp. 24012406.42.Abramovitch D. Method for guaranteeing stable non-linear PLLs. 2004. US Patent App. 10/414,791, http://www.google.com/patents/US20040208274.43. Accurate and ecient PSD computation in mixed-signal circuits: a time domain approach / M. Biggio, F. Bizzarri, A.
Brambilla, M. Storace // Circuitsand Systems II: Express Briefs, IEEE Transactions on. no. 11.2014. Vol. 61,15644. Algorithms for nding hidden oscillations in nonlinear systems. The Aizerman and Kalman conjectures and Chua's circuits / V. Bragin, V. Vagaitsev,N.
Kuznetsov, G. Leonov // Journal of Computer and Systems Sciences In-ternational. 2011. Vol. 50, no. 4. Pp. 511543.45. Analysis of friction-induced limit cycling in an experimental drill-string system / N. Mihajlovic, A. van Veggel, N. van de Wouw, H. Nijmeijer // J. Dyn.Syst.
Meas. Control. 2004. Vol. 126, no. 4. Pp. 709720.46. The analysis of observed chaotic data in physical systems / H. Abarbanel,R. Brown, J. Sidorowich, L. Tsimring // Reviews of Modern Physics. 1993. Vol. 65, no. 4. Pp. 13311392.47. Analytical method for computation of phase-detector characteristic /G. Leonov, N.
Kuznetsov, M. Yuldahsev, R. Yuldashev // IEEE Transac-tions on Circuits and Systems - II: Express Briefs. 2012. Vol. 59, no. 10. Pp. 633647.48. Analytical-numerical localization of hidden attractor in electrical Chua's circuit / N. Kuznetsov, O. Kuznetsova, G. Leonov, V. Vagaitsev // Informaticsin Control, Automation and Robotics, Lecture Notes in Electrical Engineering,Volume 174, Part 4.
2013. Vol. 174, no. 4. Pp. 149158.49. Ascheid G., Meyr H. Cycle slips in phase-locked loops: A tutorial survey //Communications, IEEE Transactions on. 1982. Vol. 30, no. 10. Pp. 22282241.50. Augustova P., Beran Z., Celikovsky S. ISCS 2014: Interdisciplinary Symposium on Complex Systems, Emergence, Complexity and Computation (Eds.:A. Sanayei et al.). Springer, 2015. Pp.
249258.51. Bakaev Y. N. Stability and dynamical properties of astatic frequency synchronization system // Radiotekhnika i Elektronika. 1963. Vol. 8, no. 3. Pp. 513516.52. Barabanov E. Singular exponents and properness criteria for linear dierentialsystems // Dierential Equations. 2005. Vol. 41. Pp. 151162.15753.Barabanov N. E. On the Kalman problem // Sib. Math. J.
1988. Vol. 29,no. 3. Pp. 333341.54.Barreira L., Gelfert K. Dimension estimates in smooth dynamics: a survey ofrecent results // Ergodic Theory and Dynamical Systems. 2011. Vol. 31. Pp. 641671.55.Barreira L., Schmeling J. Setsof Non-typical points have full topologicalentropy and full Hausdor dimension //Israel Journal of Mathematics.2000. Vol. 116, no. 1. Pp. 2970.56.Bernat J., Llibre J. Counterexample to Kalman and Markus-Yamabe conjectures in dimension larger than 3 // Dynamics of Continuous, Discrete andImpulsive Systems. 1996. Vol. 2, no. 3. Pp.
337379.57.Best R.Phase-Locked Loops: Design, Simulation and Application. 6thedition. McGraw-Hill, 2007. P. 490.58. Best's conjecture on pull-in range of two-phase Costas loop / K. Alexandrov,N. Kuznetsov, G. Leonov, S. Seledzhi // 2014 6th International Congresson Ultra Modern Telecommunications and Control Systems and Workshops(ICUMT).
Vol. 2015-January. IEEE, 2014. Pp. 7882.59.Bilotta E., Pantano P. A gallery of Chua attractors. World Scientic, 2008. Vol. Series A. 61.60.Bizzarri F., Brambilla A., Gajani G. S. Periodic small signal analysis of a wideclass of type-II phase locked loops through an exhaustive variational model //Circuits and Systems I: Regular Papers, IEEE Transactions on. 2012. Vol. 59, no. 10.
Pp. 22212231.61.Bogoliubov N., Krylov N. La theorie generalie de la mesure dans son applicationa l'etude de systemes dynamiques de la mecanique non-lineaire // Ann. Math.II (in French) (Annals of Mathematics). 1937. Vol. 38, no. 1. Pp. 65113.15862.Boichenko V., Leonov G. Lyapunov's direct method in estimates of topologicalentropy // Journal of Mathematical Sciences. 1998.
Vol. 91, no. 6. Pp. 33703379.63.Boichenko V. A., Leonov G. A., Reitmann V. Dimension Theory for OrdinaryDierential Equations. Stuttgart: Teubner, 2005.64. BPSK Costas loop: Simulation of nonlinear models in Matlab Simulink /N. Kuznetsov, O. Kuznetsova, G. Leonov et al. // 2014 6th InternationalCongress on Ultra Modern Telecommunications and Control Systems andWorkshops (ICUMT).
Vol. 2015-January. IEEE, 2014. Pp. 8387.65.Bragin V., Kuznetsov N., Leonov G. Algorithm for construction of counterexamples to Aizerman's and Kalman's conjecture // IFAC Proceedings Volumes(IFAC-PapersOnline). 2010. Vol. 4, no. 1. Pp. 2428.66.Brendel F.Millimeter-Wave Radio-over-Fiber Links based on Mode-LockedLaser Diodes. Karlsruher Forschungsberichte aus dem Institut fur Hochfrequenztechnik und Elektronik. KIT Scientic Publishing, 2013.67.Cartwright M., Littlewood E. On nonlinear dierential equations of the secondorder // London Math. Soc. 1976. Vol.
20. Pp. 180189.68.Celikovsky S., Vanecek A. Bilinear systems and chaos // Kybernetika. 1994. Vol. 30. Pp. 403424.69. Chaos: Classical and Quantum / P. Cvitanovic, R. Artuso, R. Mainieri et al. Copenhagen: Niels Bohr Institute, 2012. http://ChaosBook.org.70.Chavarriga J., Grau M. Some open problems related to 16th Hilbertlem // Sci.
Ser. A Math. Sci. (N.S.). 2003. Vol. 9. Pp. 126.71.Chen G., Ueta T. Yet another chaotic attractor // International Journal ofBifurcation and Chaos. 1999. Vol. 9, no. 7. Pp. 14651466.72.Chen L. S., Wang M. S. The relative position and number of limit cycles ofthe quadratic dierential systems // Acta Math.
Sinica. 1979. Vol. 22,no. 6. Pp. 751758.prob-15973.Chen W. The Circuits and Filters Handbook. Circuits & Filters Handbook. Taylor & Francis, 2002.74.75.Choquet G., Foias C.Solution d'un probleme sur les iteres d'un operateurFourier (in French). 1975. Vol. 25, no. 3-4. Pp. 109129.positif sur C(K) et proprietes de moyennes associees // Annalesde l'institutChristopher C., Li C.
Limit cycles of dierential equations. Advanced Coursesin Mathematics. CRM Barcelona, Basel: Birkhauser Verlag, 2007.76.Chua L. A zoo of strange attractors from the canonical Chua's circuits //Proceedings of the IEEE 35th Midwest Symposium on Circuits and Systems(Cat. No.92CH3099-9). 1992. Vol.
2. Pp. 916926.77.Chua L., Komuro M., Matsumoto T. The double scroll family // IEEE Transactions on Circuits and Systems. 1986. Vol. CAS-33, no. 11. Pp. 10721118.78.Chueshov I. Introduction to the Theory of Innite-dimensional Dissipative Systems. Electronic library of mathematics. ACTA, 2002.79.Chueshov I. D. Global attractors in the nonlinear problems of mathematicalphysics // Russian Mathematical Surveys. 1993. Vol. 48, no. 3. Pp.
135162.80. Computation of the phase detector characteristic of classical PLL / G. Leonov,N. Kuznetsov, M. Yuldashev, R. Yuldashev // DokladyMathematics. 2015. Vol. 91, no. 2. Pp. 246249.81.Constantin P., Foias C., Temam R. Attractors representing turbulent ows //Memoirs of the American Mathematical Society. 1985. Vol. 53, no. 314.82. Control of mechanical motion systems with non-collocation of actuation andfriction: A Popov criterion approach for input-to-state stability and set-valuednonlinearities / J.
de Bruin, A. Doris, N. van de Wouw et al. // Automatica. 2009. Vol. 45, no. 2. Pp. 405415.16083.Costas J. Synchoronous communications // Proc. IRE. Vol. 44. 1956. Pp. 17131718.84.Costas J. P.Receiver for communication system. 1962. US Patent3,047,659.85.Czornik A., Nawrat A., Niezabitowski M. Lyapunov exponents for discretetime-varying systems // Studies in Computational Intelligence. 2013. Vol. 440.