Диссертация (1145368), страница 21
Текст из файла (страница 21)
Pp. 2944.86.Danca M.-F., Chen G. Bifurcation and chaos in a complex model of dissipativemedium // International Journal of Bifurcation and Chaos. 2004. Vol. 14,no. 10. Pp. 34093447.87.Davis W.Radio Frequency Circuit Design. Wiley Series in Microwave andOptical Engineering. Wiley, IEEE Press, 2011.88.Dellnitz M., Junge O.Set oriented numerical methods for dynamical sys-tems // Handbook of Dynamical Systems.
Elsevier Science, 2002. Vol. 2. Pp. 221264.89. Determining Lyapunov exponents from a time series / A. Wolf, J. B. Swift,H. L. Swinney, J. A. Vastano //Physica D: Nonlinear Phenomena. 1985. Vol. 16, no. D. Pp. 285317.90. Discontinuous dierential equations: comparison of solution denitions andlocalization of hidden Chua attractors / G. Leonov, M. Kiseleva, N. Kuznetsov,O. Kuznetsova // IFAC-PapersOnLine.
2015. Vol. 48, no. 11. Pp. 408413.91.Doering C. R., Gibbon J. On the shape and dimension of the Lorenz attractor // Dynamics and Stability of Systems. 1995. Vol. 10, no. 3. Pp. 255268.92.Douady A., Oesterle J. Dimension de Hausdor des attracteurs // C.R. Acad.Sci. Paris, Ser. A. (in French). 1980. Vol. 290, no. 24. Pp. 11351138.16193. Drilling systems failures and hidden oscillations / M. Kiseleva, N. Kuznetsov,G. Leonov, P. Neittaanmaki // IEEE 4th International Conference on Nonlinear Science and Complexity, NSC 2012 - Proceedings. 2012.
Pp. 109112.94.Dudkowski D., Prasad A., Kapitaniak T. Perpetual points and hidden attractors in dynamical systems // Physics Letters A. 2015. Vol. 379, no. 40-41. Pp. 2591 2596.95.Dumortier F., Llibre J., Artes J. QualitativeTheory of Planar DierentialSystems. New York: Springer, 2006.96.Eckert M. Arnold Sommerfeld:Science, Life and Turbulent Times 1868-1951. Springer, 2013.97.Eden A. An abstract theory of L-exponents with applications to dimensionanalysis (PhD thesis). Indiana University, 1989.98.Eden A. Local Lyapunov exponents and a local estimate of Hausdor dimension // ESAIM: Mathematical Modelling and Numerical Analysis - Modelisation Mathematique et Analyse Numerique.
1989. Vol. 23, no. 3. Pp. 405413.99.Eden A. Local estimates for the Hausdor dimension of an attractor // Journalof Mathematical Analysis and Applications. 1990. Vol. 150, no. 1. Pp. 100119.100.Eden A., Foias C., Temam R. Local and global Lyapunov exponents // Journal of Dynamics and Dierential Equations. 1991. Vol. 3, no. 1. Pp.
133177. [Preprint No. 8804, The Institute for Applied Mathematicsand Scientic Computing, Indiana University, 1988].101. Ecient transient noise analysis of non-periodic mixed analogue/digital circuits / M. Biggio, F. Bizzarri, A. Brambilla, M. Storace //Devices & Systems. 2015. Vol. 9, no. 2. Pp. 7380.102.IET Circuits,Eisencraft M., Attux R., Suyama R. Chaotic Signals in Digital Communications.
Electrical engineering & applied signal processing. CRC Press, 2013.162103. Elegant analytic computation of phase detector characteristic for nonsinusoidal signals / N. Kuznetsov, G. Leonov, S. Seledzhi et al. //PapersOnLine.104.IFAC- 2015. Vol. 48, no. 11. Pp. 960963.Ershova O. B., Leonov G.
A.Frequency estimates of the number of cycleslidings in phase control systems //Avtomat. Remove Control. 1983. Vol. 44, no. 5. Pp. 600607.105.Evan-Iwanowski R. ResonanceOscillations in Mechanical Systems. Elsevier,1976.106.Farmer J., Ott E., Yorke J.D: Nonlinear Phenomena.107.Feßler R.Physica 1983. Vol.
7, no. 1-3. Pp. 153 180.A proof of the two-dimensional Markus-Yamabe stability conjectureand a generalization // Ann.108.The dimension of chaotic attractors //Fitts R. E.Polon. Math. 1995. Vol. 62. Pp. 4547.Two counterexamples to Aizerman's conjecture // Trans.IEEE.1966. Vol. AC-11, no. 3. Pp.
553556.109.Fradkov A., Tomchina O., Tomchin D.in mechanical systems //Controlled passage through resonanceJournal of Sound and Vibration. 2011. Vol.330, no. 6. Pp. 10651073.110.Gardner F.Phaselock techniques. New York: John Wiley & Sons, 1966. P. 182.111.Gardner F.Phaselock techniques. 2nd edition. New York: John Wiley &Sons, 1979.
P. 320.112.Gardner F.Phaselock Techniques. 3rd edition. Wiley, 2005. P. 550.113.Gasull A., Guillamon A., Manosa V.An explicit expression of the rst Lia-punov and period constants with applications // J.Math. Anal. Appl. 1997. Vol.
211. Pp. 190212.114.Gelfert K.Maximum local Lyapunov dimension bounds the box dimension.Direct proof for invariant sets on Riemannian manifolds // Z. 2003. Vol. 22. Pp. 553568.Anal. Anwend.163115.Gine J. On some problems in planar dierential systems and Hilbert's 16thproblem // Chaos, Solutions and Fractals. 2007. Vol. 31. Pp. 11181134.116.117.118.Glukhovskii A. B., Dolzhanskii F. V. Three-component geostrophic model ofconvection in a rotating uid // Academy of Sciences, USSR, Izvestiya, Atmospheric and Oceanic Physics (in Russian).
1980. Vol. 16. Pp. 311318.Glutsyuk A. A. Asymptotic stability of linearizations of a planar vector eldwith a singular point implies global stability // Functional Analysis and ItsApplications. 1995. Vol. 29, no. 4. Pp. 238247.Grabowski P. Absolute stability criteria for innite dimensional discrete Lur'esystems with application to loaded distortionless electric RLCG-transmissionline // Journal of Dierence Equations and Applications. 2011.119.120.121.Gubar' N.
A. Investigation of a piecewise linear dynamical system with threeparameters // J. Appl. Math. Mech. 1961. Vol. 25, no. 6. Pp. 10111023.Gundlach V., Steinkamp O. Products of random rectangular matrices // Mathematische Nachrichten. 2000. Vol. 212, no. 1. Pp. 5176.Gutierrez C. A solution to the bidimensional global asymptotic stability conjecture // Ann. Inst. H. Poincare Anal. Non Lineaire. 1995.
Vol. 12. Pp. 627671.122.Hahs D., Sorrells J. Dynamic vehicle control (problem) // American ControlConference. Proceedings. 2011. Pp. 29672968.123.Hasegawa K., Kanetsuna H., Wakamori M. GPS positioning method and GPSreception apparatus. 2001. EP1092987 A2.124.125.Hauser H., Risler J.-J., Teissier B. The reduced bautin index of planar vectorelds // Duke Math.
J. 1999. Vol. 100. Pp. 425445.Heath W. P., Carrasco J., de la Sen M. Second-order counterexamples to thediscrete-time Kalman conjecture // Automatica. 2015. Vol. 60. Pp. 140 144.164126.Hegger R., Kantz H., Schreiber T. Practical implementation of nonlinear timeseries methods: The TISEAN package // Chaos. 1999. Vol. 9. Pp.
413435.127.Henon M. A two-dimensional mapping with a strange attractor // Communications in Mathematical Physics. 1976. Vol. 50, no. 1. Pp. 6977.128. Hidden attractor in Chua's circuits / N. Kuznetsov, O. Kuznetsova, G. Leonov,V. Vagaytsev // ICINCO2011 - Proceedings of the 8th International Conference on Informatics in Control, Automation and Robotics. 2011.
Vol. 1. Pp. 279283.129. Hidden attractors in dynamical systems / D. Dudkowski,fari,T.Kapitaniaketal.//Physics Reports.S. Ja2016.http://dx.doi.org/10.1016/j.physrep.2016.05.002.130. Hidden oscillations in aircraft ight control system with input saturation /B. Andrievsky, N. Kuznetsov, G.
Leonov, A. Pogromsky // IFACProceedingsVolumes (IFAC-PapersOnline). 2013. Vol. 5, no. 1. Pp. 7579.131. Hidden oscillations in drilling system actuated by induction motor / M. Kiseleva, N. Kuznetsov, G. Leonov, P. Neittaanmaki // IFAC(IFAC-PapersOnline).
2013. Vol. 5. Pp. 8689.Proceedings Volumes132. Hidden oscillations in drilling systems with salient pole synchronous motor / M. Kiseleva, N. Kondratyeva, N. Kuznetsov, G. Leonov //PapersOnLine. 2015. Vol. 48, no. 11. Pp. 700705.IFAC-133. Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor / G. Leonov, N. Kuznetsov, M. Kiselevaet al. //Nonlinear Dynamics. 2014. Vol. 77, no.
1-2. Pp. 277288.134. Hidden oscillations in stabilization system of exible launcher with saturatingactuators / B. Andrievsky, N. Kuznetsov, G. Leonov, S. Seledzhi //Proceedings Volumes (IFAC-PapersOnline).Pp. 3741.IFAC 2013. Vol. 19, no. 1. 165135. Hidden periodic oscillations in drilling system driven by induction motor /M. Kiseleva, N. Kondratyeva, N.
Kuznetsov et al. // IFAC Proceedings Volumes(IFAC-PapersOnline). 2014. Vol. 19. Pp. 58725877.136. High-level continuous-time Sigma-Delta design in Matlab/Simulink / R. Kaald,I. Lokken, B. Hernes, T. Saether // NORCHIP, 2009. IEEE, 2009. Pp. 16.137.Hilbert D.Mathematical problems. //Bull. Amer. Math. Soc. 1901-1902. no. 8.
Pp. 437479.138. Hold-in, pull-in, and lock-in ranges of PLL circuits: rigorous mathematical denitions and limitations of classical theory / G. Leonov, N. Kuznetsov, M. Yuldashev, R. Yuldashev // IEEEPapers.139. 2015. Vol. 62, no. 10. Pp. 24542464.Hoover W.Canonical dynamics: Equilibrium phase-space distributions //Phys. Rev.