Диссертация (1145368), страница 23
Текст из файла (страница 23)
Vol. 26, no. 3. Pp. 1518. [Transl. from Russian: Vestnik Sankt-Peterburgskogo Universiteta. Ser 1.Matematika, 26(3), 14-16].194.Leonov G., Pogromsky A., Starkov K. Erratum to The dimension formula forthe Lorenz attractor [Phys. Lett. A 375 (8) (2011) 1179] // Physics LettersA. 2012. Vol. 376, no. 45. Pp. 3472 3474.171195.Leonov G., Poltinnikova M.On the Lyapunov dimension of the attrac-AMS Translations. Proceedings ofSt.Petersburg Mathematical Society.
Vol. X. 2005. Vol. 224. Pp. 1528.tor of Chirikov dissipative mapping //196.Leonov G., Vagaitsev V., Kuznetsov N. Algorithm for localizing Chua attractors based on the harmonic linearization method // Doklady Mathematics. 2010. Vol. 82, no. 1. Pp. 663666.197.Leonov G. A. On a method of investigating global stability of nonlinear systems // Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. 1991. Vol. 24,no. 4. Pp. 1114.198.Leonov G.
A. On estimations of Hausdor dimension of attractors // VestnikSt. Petersburg University: Mathematics. 1991. Vol. 24, no. 3. Pp. 3841. [Transl. from Russian: Vestnik Leningradskogo Universiteta. Mathematika,24(3), 1991, pp. 41-44].199.Leonov G. A. Phase-locked loops. Theory and application // Automation andRemote Control. 2006. Vol. 10. Pp. 15731609.200.Leonov G. A. Sets of transversal curves for two-dimensional systems of dierential equations // Vestnik St.Petersburg University. 2006.
Vol. 39, no. 4. Pp. 219245.201.Leonov G. A. Strange attractors and classical stability theory. St.Petersburg:St.Petersburg University Press, 2008.202.Leonov G. A. Lyapunov functions in the attractors dimension theory // Journalof Applied Mathematics and Mechanics. 2012. Vol. 76, no. 2. Pp. 129141.203.Leonov G. A., Boichenko V. A. Lyapunov'sdirect method in the estimationof the Hausdor dimension of attractors // ActaApplicandae Mathematicae.
1992. Vol. 26, no. 1. Pp. 160.204.Leonov G. A., Burkin I. M., Shepelyavy A. I. Frequency Methods in OscillationTheory. Dordretch: Kluwer, 1996.172205.Leonov G. A., Kuznetsova O. A.Lyapunov quantities and limit cycles oftwo-dimensional dynamical systems. Analytical methods and symbolic computation //Regular and Chaotic Dynamics.
2010. Vol. 15, no. 2-3. Pp. 354377.206.Leonov G. A., Ponomarenko D. V., Smirnova V. B. Frequency-Domain Methods for Nonlinear Analysis. Theory and Applications. Singapore: WorldScientic, 1996.207.Leonov G. A., Reitmann V., Smirnova V. B. Nonlocal Methods for Pendulumlike Feedback Systems.
Stuttgart-Leipzig: Teubner Verlagsgesselschaft, 1992.208.Levinson N. A second order dierential equationAnn. Math. 1949. Vol. 50. Pp. 127153.209.Li J.with singular solutions //Hilbert's 16-th problem and bifurcations of planar polynomial vectorelds //International Journal of Bifurcation and Chaos. 2003.
Vol. 13,no. 1. Pp. 47106.210. The Liapunov dimension of strange attractors / P. Frederickson, J. Kaplan,E. Yorke, J. Yorke //Journal of Dierential Equations. 1983. Vol. 49,no. 2. Pp. 185207.211. Limitations of PLL simulation: hidden oscillations in MATLAB and SPICE /G. Bianchi, N. Kuznetsov, G. Leonov et al. // InternationalCongress on UltraModern Telecommunications and Control Systems and Workshops (ICUMT2015).
2016. Vol. 2016-January. Pp. 7984.212. Limitations of the classical phase-locked loop analysis / N. Kuznetsov,O. Kuznetsova, G. Leonov et al. //posium on Circuits and Systems. 213.Lindsey W. SynchronizationProceedings - IEEE International Sym-2015. Vol. 2015-July. Pp. 533536.systems in communication and control.
NewJersey: Prentice-Hall, 1972.214.Lindsey W., Tausworthe R. A Bibliography of the Theory and Application ofthe Phase-lock Principle. JPL technical report. Jet Propulsion Laboratory,California Institute of Technology, 1973.173215.Llibre J., Ponce E., Ros J. Algebraic determination of limit cycles in a family ofthree-dimensional piecewise linear dierential systems // Nonlinear Analysis. 2011. Vol. 74. Pp. 67126727.216.Lloyd N. G. New direction in dynamical systems. 1988.
Pp. 192234.217. Localization of hidden attractors in smooth Chua's systems / N. Kuznetsov,V. Vagaitsev, G. Leonov, S. Seledzhi // Internationaland Computational Mathematics. Conference on Applied2011. Pp. 2633.218. Looking more closely at the Rabinovich-Fabrikant system / M.-F. Danca,M. Feckan, N. Kuznetsov, G. Chen //219.International Journal of Bifurcationand Chaos. 2016. Vol. 26, no. 02. art. num.
1650038.Lorenz E. N.Deterministic nonperiodic ow //J. Atmos. Sci. 1963. Vol. 20, no. 2. Pp. 130141.220.Lu J., Chen G. A new chaotic attractor coinedChaos. 2002. Vol. 12. Pp. 17891812.//Int. J. Bifurcation and221. The Lyapunov dimension formula for the global attractor of the Lorenz system / G. Leonov, N. Kuznetsov, N. Korzhemanova, D. Kusakin // arXiv. 2015. Vol. http://arxiv.org/pdf/1508.07498v1.pdf.222. Lyapunov dimension formula of attractors in the Tigan and Yang systems / G. Leonov, N. Kuznetsov, N.
Korzhemanova, D. Kusakin //arXiv:1510.01492v1. 223.Lynch S.2015. Vol. http://arxiv.org/pdf/1510.01492v1.pdf.Dierential Equations with Symbolic Computations. 2005. Pp. 126.224.Margaliota M., Yfoulis C. Absolute stability of third-order systems: A numerical algorithm // Automatica. 2006. Vol. 42. Pp.
17051711.225.Margaris N.Theory of the Non-Linear Analog Phase Locked Loop. NewJersey: Springer Verlag, 2004. P. 287.226.Markus L., Yamabe H. Global stability criteria for dierential systems // OsakaMath. J. 1960. Vol. 12. Pp. 305317.174227. Mathematical models of the Costas loop / G.
Leonov, N. Kuznetsov, M. Yuldashev, R. Yuldashev //Doklady Mathematics. 2015. Vol. 92, no. 2. Pp. 594598.228.Meador C. A comparison of two 4th-order numerical ordinary dierential equation methods applied to the RabinovichFabrikant equations. 2009.229.Melnikov V. On the stability of the center for time periodic perturbation //Transactions of the Moscow Mathematical Society. 1963.
Vol. 12. Pp. 156.230.Milnor J.Attractor //Scholarpedia.2006. Vol. 1, no. 11. doi:10.4249/scholarpedia.1815.231. Modeling of fractional-N division frequency synthesizers with SIMULINK andMATLAB / S. Brigati, F. Francesconi, A. Malvasi et al. // 8th IEEE International Conference on Electronics, Circuits and Systems, 2001.
ICECS 2001. Vol. 2. 2001. Pp. 10811084 vol.2.232. Modern symbolic computation methods: Lyapunov quantities and 16th Hilbertproblem / G. Leonov, N. Kuznetsov, E. Kudryashova, O. Kuznetsova // SPI-IRAS Proceedings. 2011. Vol. 1, no. 16. Pp. 536.233.Noack A., Reitmann V. Hausdor dimension estimates for invariant sets oftime-dependent vector elds // Z.
Anal. Anwend. 1996. Vol. 15. Pp. 457473.234.Noldus E. A counterpart of Popov's theorem for the existence of periodic solutions // Int. J. Control. 1971. Vol. 13, no. 4. Pp. 705719.235. Nonlinear analysis of classical phase-locked loops in signal's phase space /N. Kuznetsov, G. Leonov, M. Yuldashev, R. Yuldashev // IFACProceedingsVolumes (IFAC-PapersOnline). 2014. Vol. 19. Pp.
82538258.236. Nonlinear dynamical model of Costas loop and an approach to the analysis ofits stability in the large / G. Leonov, N. Kuznetsov, M. Yuldashev, R. Yuldashev //Signal processing. 2015. Vol. 108. Pp. 124135.175237. Nonlinear models of BPSK Costas loop / E. Kudryashova, O. Kuznetsova,N. Kuznetsov et al. //ICINCO 2014 - Proceedings of the 11th InternationalConference on Informatics in Control, Automation and Robotics. 2014. Vol.
1. Pp. 704710.238.Nose S.ble //239.A molecular dynamics method for simulations in the canonical ensem-Molecular Physics. 1984. Vol. 52, no. 2. Pp. 255268.Nowsheen N., Benson C., Frater M.Design of a high frequency FPGA acous-tic modem for underwater communication // OCEANS 2010 IEEE-Sydney /IEEE.
2010. Pp. 16.240.Ogorzalek M.Chaos and Complexity in Nonlinear Electronic Circuits. Serieson Nonlinear Science. World Scientic, 1997.241. On the magnitude of the locking band of a phase-shift automatic frequency control system with a proportionally integrating lter / L. Belyustina, V. Brykov,K. Kiveleva, V. Shalfeev //Radiophysics and Quantum Electronics. 1970. Vol. 13, no. 4. Pp.
437440.242.Ott E., Withers W., Yorke J.Is the dimension of chaotic attractors invariantunder coordinate changes? // Journal of Statistical Physics. 1984. Vol. 36,no. 5-6. Pp. 687697.243.Ott W., Yorke J.When Lyapunov exponents fail to exist // Phys.Rev. E.2008. Vol. 78. P. 056203.244.245.Pesin Y.Characteristic Lyapunov exponents and smooth ergodic theory //Russian Mathematical Surveys. 1977. Vol. 32, no. 4. Pp.
55114.Petrovskii I. G., Landis Y. M.On the number of limit cycles of the equationdydx=P (x,y)Q(x,y) ,where P and Q are 2-th degree polynomials //Mat. Sb. (N.S.). 1955. Vol. 37(79), no. 2. Pp. 209250.246.Pikovski A. S., Rabinovich M. I., Trakhtengerts V. Y.Onset of stochasticityin decay connement of parametric instability // Sov.Phys. JETP.