Диссертация (1145368), страница 22
Текст из файла (страница 22)
A.140.Transactions on Circuits and SystemsI: Regular 1985. Vol. 31. Pp. 16951697.Horn R., Johnson C.Topics in Matrix Analysis. Cambridge: CambridgeUniversity Press, 1994.141.Hunt B.Maximum local Lyapunov dimension bounds the box dimension ofchaotic attractors // Nonlinearity.
1996. Vol. 9, no. 4. Pp. 845852.142.Hurewicz W., Wallman H.Dimension Theory. Princeton: Princeton Uni-versity Press, 1941.143. Is that really hidden? The presence of complex xed-points in chaotic owswith no equilibria / V.-T. Pham, S. Jafari, C. Volos et al. //Journal of Bifurcation and Chaos.International 2014. Vol. 24, no. 11. art. num.1450146.144.Izobov N.
A.Lyapunov exponents and stability. Cambridge: CambridgeScientic Publischers, 2012.145.Kalman R. E.Physical and mathematical mechanisms of instability in nonlin-ear automatic control systems // Transactionsno. 3. Pp. 553566.of ASME. 1957. Vol. 79,166146.Kapitaniak T. Chaotic Oscillators: Theory and Applications. World Scientic, 1992.147.Kaplan E., Hegarty C. Understanding GPS: Principles and Applications. Artech House, 2006.
P. 723.148.Kaplan J. L., Yorke J. A. Chaoticbehavior of multidimensional dierenceequations // Functional Dierential Equations and Approximations of FixedPoints. Berlin: Springer, 1979. Pp. 204227.149.150.Khalil H. K. Nonlinear Systems. N.J: Prentice Hall, 2002.Kharitonov V. Asymptotic stability of an equilibrium position of a family ofsystems of dierential equations // Dierentsialnye uravneniya. 1978. Vol. 14.
Pp. 20862088.151.Kihara M., Ono S., Eskelinen P. Digital Clocks for Synchronization and Communications. Artech House, 2002. P. 269.152.Kiseleva M. A., Kuznetsov N. V., Leonov G. A. Hidden and self-excited attractors in electromechanical systems with and without equilibria // arXiv. 2016. http://arxiv.org/pdf/1601.06909.pdf.153.Koivo H., Elmusrati M. Systems Engineering in Wireless Communications. Wiley, 2009.154.Kroupa V. Frequency Stability:Introduction and Applications. IEEE Serieson Digital & Mobile Communication. Wiley-IEEE Press, 2012. P. 328.155.Kuczma M., Gilanyi A.
An Introduction to the Theory of Functional Equationsand Inequalities: Cauchy's Equation and Jensen's Inequality. BirkhauserBasel, 2009.156.Kudryashova E. V. Cycles in Continuous and Discrete Dynamical Systems. Jyvaskyla University Printing House, 2009.157.Kunze M., Kupper T. Non-smooth dynamical systems: An overview // ErgodicTheory, Analysis, and Ecient Simulation of Dynamical Systems. Springer,2001. Pp.
431452.167158.Kuratowski K. Topology. New York: Academic press, 1966.159.Kuznetsov N. Stability and Oscillations of Dynamical Systems:Theory andApplications. Jyvaskyla University Printing House, 2008.160.Kuznetsov N. Hidden attractors in fundamental problems and engineering models. A short survey. // Lecture Notes in Electrical Engineering. 2016. Vol.371.
Pp. 1325. (Plenary lecture at AETA 2015: Recent Advances inElectrical Engineering and Related Sciences).161.162.163.Kuznetsov N. The Lyapunov dimension and its estimation via the Leonovmethod // Physics Letters A. 2016. Vol. 380, no. 2526. Pp. 21422149.Kuznetsov N., Alexeeva T., Leonov G. Invariance of Lyapunov exponents andLyapunov dimension for regular and irregular linearizations // Nonlinear Dynamics. 2016.
Pp. 17. (http://dx.doi.org/10.1007/s11071-016-2678-4).Kuznetsov N., Kuznetsova O., Leonov G. Visualizationof four normal sizelimit cycles in two-dimensional polynomial quadratic system //Dierentialequations and dynamical systems. 2013. Vol. 21, no.
1-2. Pp. 2934.164.Kuznetsov N., Leonov G. On stability by the rst approximation for discretesystems // 2005 International Conference on Physics and Control, PhysCon2005. Vol. Proceedings Volume 2005. IEEE, 2005. Pp. 596599.165.Kuznetsov N.,ties//6thLeonov G.EUROMECHComputationNonlinearofLyapunovDynamicsquanti-Conference.http://lib.physcon.ru/?item=1802, 2008.166.167.Kuznetsov N., Leonov G.
Lyapunov quantities, limit cycles and strange behavior of trajectories in two-dimensional quadratic systems // Journal of Vibroengineering. 2008. Vol. 10, no. 4. Pp. 460467.Kuznetsov N., Leonov G. A short survey on Lyapunov dimension for nitedimensional dynamical systems in Euclidean space // arXiv. 2016. http://arxiv.org/pdf/1510.03835v2.pdf.168168.Kuznetsov N.,Leonov G.,thesystemRabinovich//Mokaev T.
HiddenarXiv:1504.04723v1. attractorin2015.http://arxiv.org/pdf/1504.04723v1.pdf.169.170.171.Kuznetsov N., Leonov G., Vagaitsev V. Analytical-numerical method for attractor localization of generalized Chua's system // IFAC Proceedings Volumes(IFAC-PapersOnline). 2010. Vol. 4, no. 1.
Pp. 2933.Kuznetsov N., Mokaev T., Vasilyev P. Numerical justication of Leonov conjecture on Lyapunov dimension of Rossler attractor // Commun Nonlinear SciNumer Simulat. 2014. Vol. 19. Pp. 10271034.Lauvdal T., Murray R., Fossen T. Stabilization of integrator chains in thepresence of magnitude and rate saturations: a gain scheduling approach //Proc.
IEEE Control and Decision Conference. Vol. 4. 1997. Pp. 44044005.172.Ledrappier F. Some relations between dimension and Lyapounov exponents //Communications in Mathematical Physics. 1981. Vol. 81, no. 2. Pp. 229238.173.174.Leonov G. Lyapunov dimension formulas for Henon and Lorenz attractors //St.Petersburg Mathematical Journal. 2002. Vol.
13, no. 3. Pp. 453464.Leonov G., Alexeeva T., Kuznetsov N. Analytic exact upper bound for theLyapunov dimension of the Shimizu-Morioka system // Entropy. 2015. Vol. 17, no. 7. Pp. 51015116.175.Leonov G., Bragin V., Kuznetsov N. Algorithm for constructing counterexamples to the Kalman problem // Doklady Mathematics. 2010. Vol. 82,no. 1. Pp.
540542.176.Leonov G., Bragin V., Kuznetsov N. On problems of Aizerman and Kalman //Vestnik St. Petersburg University. Mathematics. 2010. Vol. 43, no. 3. Pp. 148162.169177.Leonov G., Kuznetsov N. Time-varying linearization and the Perron eects //International Journal of Bifurcation and Chaos. 2007. Vol. 17, no. 4. Pp. 10791107.178.Leonov G., Kuznetsov N. Localization of hidden oscillations in dynamical systems (plenary lecture) // 4th International Scientic Conference on Physics andControl. 2009. http://www.math.spbu.ru/user/leonov/publications/2009-PhysCon-Leonov-plenary-hidden-oscillations.pdf.179.Leonov G., Kuznetsov N. Algorithms for searching for hidden oscillations in theAizerman and Kalman problems // Doklady Mathematics.
2011. Vol. 84,no. 1. Pp. 475481.180.Leonov G., Kuznetsov N. Hidden attractors in dynamical systems. From hiddenoscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hiddenchaotic attractors in Chua circuits // InternationalChaos. 181.Journal of Bifurcation and2013. Vol.
23, no. 1. art. no. 1330002.Leonov G., Kuznetsov N. Numerical Methods for Dierential Equations, Optimization, and Technological Problems, Computational Methods in AppliedSciences, Volume 27, Part 1. Springer, 2013. Pp. 4164.182.Leonov G., Kuznetsov N. Hidden oscillations in dynamical systems.
16 Hilbert'sproblem, Aizerman's and Kalman's conjectures, hidden attractors in Chua'scircuits //Journal of Mathematical Sciences. 2014. Vol. 201, no. 5. Pp. 645662.183.Leonov G., Kuznetsov N.Nonlinear Mathematical Models of Phase-LockedLoops. Stability and Oscillations. Cambridge Scientic Publisher, 2014.184.Leonov G., Kuznetsov N.On dierences and similarities in the analysis ofLorenz, Chen, and Lu systems //Applied Mathematics and Computation. 2015.
Vol. 256. Pp. 334343.185.Leonov G., Kuznetsov N., Kudryashova E. Cycles of two-dimensional systems:Computer calculations, proofs, and experiments // Vestnik St. Petersburg University. Mathematics. 2008. Vol. 41, no. 3. Pp. 216250.170186.Leonov G., Kuznetsov N., Kudryashova E. A direct method for calculating Lyapunov quantities of two-dimensional dynamical systems // Proceedings of theSteklov Institute of Mathematics. 2011. Vol. 272 (Suppl.
1). Pp. S119S127.187.Leonov G., Kuznetsov N., Mokaev T. Hiddenattractor and homoclinic orbitin Lorenz-like system describing convective uid motion in rotating cavity //Communications in Nonlinear Science and Numerical Simulation. 2015. Vol. 28. Pp. 166174.188.Leonov G., Kuznetsov N., Mokaev T. Homoclinic orbits, and self-excited andhidden attractors in a Lorenz-like system describing convective uid motion //Eur. Phys. J. Special Topics. 189.2015. Vol. 224, no.
8. Pp. 14211458.Leonov G., Kuznetsov N., Mokaev T.The Lyapunov dimension formula ofself-excited and hidden attractors in the Glukhovsky-Dolzhansky system //arXiv:1509.09161. 190.2015. http://arxiv.org/pdf/1509.09161v1.pdf.Leonov G., Kuznetsov N., Seledzhi S. Automation control - Theory and Practice. In-Tech, 2009.
Pp. 89114.191.Leonov G., Kuznetsov N., Vagaitsev V. Localization of hidden Chua's attractors // Physics Letters A. 2011. Vol. 375, no. 23. Pp. 22302233.192.Leonov G., Kuznetsov N., Vagaitsev V. Hidden attractor in smooth Chua systems // Physica D: Nonlinear Phenomena. 2012. Vol. 241, no. 18. Pp. 14821486.193.Leonov G., Lyashko S. Eden's hypothesis for a Lorenz system // Vestnik St.Petersburg University: Mathematics. 1993.