Диссертация (1145368), страница 24
Текст из файла (страница 24)
Vol. 47. Pp. 715719. 1978.176247.Pogromsky A. Y., Matveev A. S. Estimation of topological entropy via thedirect Lyapunov method // Nonlinearity. 2011. Vol. 24, no. 7. Pp. 19371959.248.Poincare H. Memoire sur les courbes denies par lesequations dieentielles //J. de. Mathematiques Pures et Appliquees.
1885. no. 4(1). Pp. 167244.249. A polynomial counterexample to the Markus-Yamabe conjecture / A. Cima,A. van den Essen, A. Gasull et al. //Advances in Mathematics. 1997. Vol. 131, no. 2. Pp. 453457.250.Popov Y. P., Pal'mov I. P. Approximate Methods for Investigating Non-LinearControl Systems. Moscow: Fizmatgiz, 1960.251.Prasad A. Existence of perpetual points in nonlinear dynamical systems andits applications // International Journal of Bifurcation and Chaos.
2015. Vol. 25, no. 2. art. num. 1530005.252. Pull-in range of the classical {PLL} with impulse signals / K. Alexandrov,N. Kuznetsov, G. Leonov et al. //IFAC-PapersOnLine. 2015. Vol. 48,no. 1. Pp. 562 567.253. Pull-in range of the pll-based circuits with proportionally-integrating lter /K. Alexandrov, N.
Kuznetsov, G. Leonov et al. //IFAC-PapersOnLine.2015. Vol. 48, no. 11. Pp. 720724.254.Purkayastha B., Sarma K. ADigital Phase Locked Loop based Signal andSymbol Recovery System for Wireless Channel. Springer, 2015.255.Rabinovich M. I. Stochastic autooscillations and turbulence // Uspehi Physicheskih. 1978. Vol.
125, no. 1. Pp. 123168.256.Rabinovich M. I., Fabrikant A. L. Stochastic self-modulation of waves innonequilibrium media // Journal of Experimental and Theoretical Physics. 1979. Vol. 77. Pp. 617629.177257.Rasvan V. Unsolved Problems in Mathematical Systems and Control Theory(Eds.: Blondel V.D., Megretski A.). Princeton University Press, 2004.
Pp. 212220.258. Reliable and ecient phase noise simulation of mixed-mode integer-N phaselocked loops / M. Biggio, F. Bizzarri, A. Brambilla et al. // Circuit Theory andDesign (ECCTD), 2013 European Conference on / IEEE. 2013. Pp. 14.259. Response of Costas PLL in the presence of in-band interference / M. Al-Aboodi,N.
Kuznetsov, G. Leonov et al. //IFAC-PapersOnLine. 2015. Vol. 48,no. 11. Pp. 714 719.260. Rigorous mathematical denitions of the hold-in and pull-in ranges for phaselocked loops / N. Kuznetsov, G. Leonov, M. Yuldashev, R. Yuldashev // IFAC-PapersOnLine. 2015. Vol. 48, no. 11.
Pp. 710713.261. A robust Kalman conjecture for rst-order plants / R. Alli-Oke, J. Carrasco,W. Heath, A. Lanzon // IFACProceedings Volumes (IFAC-PapersOnline). 2012. Vol. 7. Pp. 2732.262.Romanovski V., Jarrah A., Laubenbacher R. The cyclicity problem for twodimensional polynomial systems // Dierential Equations and Control Processes. 2008.
Vol. 2.263.Rosenkranz W. Phase-locked loops with limiter phase detectors in the presenceof noise // IEEE Transactions on communications. 1982. Vol. COM-30,no. 10. Pp. 805809.264.Rosenstein M., Collins J., De Luca C. Apractical method for calculatinglargest Lyapunov exponents from small data sets //Phenomena. 265.Physica D: Nonlinear1993. Vol. 65, no. 1-2. Pp.
117134.Rossler O. E. An equation for continuous chaos // Physics Letters A. 1976. Vol. 57, no. 5. Pp. 397398.266.Russel D., Hanson J., Ott E. Dimension of strange attractorsReview Letters. 1980. Vol. 45, no. 14. Pp. 11751178.//Physical178267. Sabatini M., Chavarriga J. A survey of isochronous centers // QualitativeTheory of Dynamical Systems.
1999. Vol. 1. Pp. 170.268. Samoilenko A., Petryshyn R. Multifrequency Oscillations of Nonlinear Systems. Mathematics and Its Applications. Springer, 2004.269. Schmeling J. A dimension formula for endomorphisms the Belykh family //Ergodic Theory and Dynamical Systems.
1998. 10. Vol. 18. Pp. 12831309.270. Shakhgil'dyan V., Lyakhovkin A. Sistemy fazovoi avtopodstroiki chastoty (inRussian). Moscow: Svyaz', 1972.271. Shi S. A concrete example of the existence of four limit cycles for planequadratic systems // Sci.
Sinica. 1980. no. 23. Pp. 153158.272. Shilnikov L. A case of the existence of a denumerable set of periodic motions //Sov. Math. Dokl. 1965. Vol. 6. Pp. 163166.273. Shimizu T., Morioka N. On the bifurcation of a symmetric limit cycle to anasymmetric one in a simple model // Physics Letters A. 1980. Vol. 76,no. 3-4. Pp. 201 204.274. A short survey on nonlinear models of the classic Costas loop: rigorousderivation and limitations of the classic analysis / R. Best, N. Kuznetsov,O.
Kuznetsova et al. // Proceedings of the American Control Conference. IEEE, 2015. Pp. 12961302. art. num. 7170912,http://arxiv.org/pdf/1505.04288v1.pdf.275. Simulation of analog Costas loop circuits / R. Best, N. Kuznetsov, G. Leonovet al. // International Journal of Automation and Computing. 2014. Vol. 11, no. 6. Pp.
571579. 10.1007/s11633-014-0846-x.276. Simulation of nonlinear models of modied BPSK Costas loop for non sinusoidal waveforms in Matlab Simulink / N. Kuznetsov, G. Leonov, M. Yuldashev, R. Yuldashev // 2014 6th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT). Vol. 2015-January. IEEE, 2014. Pp.
8894.179277. Simulation of nonlinear models of QPSK Costas loop in Matlab Simulink /N. Kuznetsov, O. Kuznetsova, G. Leonov et al. // 2014 6th InternationalCongress on Ultra Modern Telecommunications and Control Systems andWorkshops (ICUMT). Vol. 2015-January. IEEE, 2014. Pp.
6671.278. Simulation of phase-locked loops in phase-frequency domain / N. Kuznetsov,G. Leonov, P. Neittaanmaki et al. // International Congress on Ultra ModernTelecommunications and Control Systems and Workshops. IEEE, 2012. Pp. 351356 (art. no. 6459692).279. Simulation of pll with impulse signals in MATLAB: Limitations, hidden oscillations, and pull-in range / M.
Blagov, N. Kuznetsov, G. Leonov et al. // International Congress on Ultra Modern Telecommunications and Control Systemsand Workshops (ICUMT 2015). 2016. Vol. 2016-January. Pp. 8590.280. Simulation of the classical analog phase-locked loop based circuits /N. Kuznetsov,PapersOnLine.281.Smith R.G. Leonov,M. Yuldashev,R.
Yuldashev //IFAC- 2015. Vol. 48, no. 1. Pp. 568 573.Some application of Hausdor dimension inequalities for ordinarydierential equation //Proc. Royal Society Edinburg. 1986. Vol. 104A. Pp. 235259.282.Sommerfeld A.Beitrage zum dynamischen ausbau der festigkeitslehre //Zeitschrift des Vereins deutscher Ingenieure. 1902. Vol.
46. Pp. 391394.283.Sprott J.Some simple chaotic ows // PhysicalReview E. 1994. Vol. 50,no. 2. Pp. R647R650.284.Sprott J., Hoover W., Hoover C.Heat conduction, and the lack thereof, intime-reversible dynamical systems: Generalized Nose-Hoover oscillators with atemperature gradient // Phys.285.Rev. E.Stensby J. Phase-Locked Loops: 2014. Vol.
89. art. num. 042914.Theory and Applications. Phase-locked Loops:Theory and Applications. Taylor & Francis, 1997.180286. Suarez A. Analysis and Design of Autonomous Microwave Circuits. Wiley Series in Microwave and Optical Engineering. Wiley-IEEE Press, 2009.287. Tempkin J., Yorke J. Spurious Lyapunov exponents computed from data //SIAM Journal on Applied Dynamical Systems. 2007. Vol.
6, no. 2. Pp. 457474.288. Tigan G., Opris D. Analysis of a 3d chaotic system // Chaos, Solitons &Fractals. 2008. Vol. 36, no. 5. Pp. 13151319.289. Top-down PLL design methodology combining block diagram, behavioral, andtransistor-level simulators / B. Nicolle, W. Tatinian, J.-J. Mayol et al. // IEEERadio Frequency Integrated Circuits (RFIC) Symposium,. 2007. Pp.
475478.290. Tricomi F. Integrazione di unequazione dierenziale presentatasi in elettrotechnica // Annali della R. Shcuola Normale Superiore di Pisa. 1933. Vol. 2,no. 2. Pp. 120.291. Ueda Y., Akamatsu N., Hayashi C. Computer simulations and non-periodicoscillations // Trans. IEICE Japan. 1973. Vol.
56A, no. 4. Pp. 218255.292. Varin V. Poincare map for some polynomial systems of dierential equations //Mat. Sb. 2004. Vol. 195. Pp. 320.293. Venkatasubramanian V. Stable operation of a simple power system with noequilibrium points // Proceedings of the 40th IEEE Conference on Decisionand Control. Vol. 3. 2001. Pp. 22012203.294. Viterbi A. Principles of coherent communications. New York: McGraw-Hill,1966. P. 321.295. Yakubovich V. A., Leonov G. A., Gelig A.
K. Stability of Stationary Setsin Control Systems with Discontinuous Nonlinearities. Singapure: WorldScientic, 2004.181296.Yang Q., Chen G. A chaotic system with one saddle and two stable nodefoci // International Journal of Bifurcation and Chaos. 2008. Vol. 18. Pp. 13931414.297.Yang T. A survey of chaotic secure communication systems // InternationalJournal of Computational Cognition. 2004. Vol. 2, no. 2.
Pp. 81130.298.Young L.-S. Mathematical theory of Lyapunov exponents // Journal of PhysicsA: Mathematical and Theoretical. 2013. Vol. 46, no. 25. P. 254001.299.Yu P. Computation of normal forms via a perturbationSound and Vibration. 1998. Vol. 211. Pp. 1938.300.ZucchelliG.Phaselockedlooptechnique //tutorial.J. ofhttp://www.mathworks.com/matlabcentral/leexchange/14868-phase-lockedloop-tutorial. 2007.301.Zygmund A.Trigonometric Series. Cambridge: Cambridge Univ. Press,1968. Vol. I & II Combined.182ÏðèëîæåíèåÐåàëèçàöèÿ àëãîðèòìà ëîêàëèçàöèè ñêðûòîãî êîëåáàíèÿ äëÿìîäåëè äèíàìèêè ðàêåòû-íîñèòåëÿ.Ïðèìåíÿÿ ìåòîä ãàðìîíè÷åñêîé ëèíåàðèçàöèè (ñî çíà÷åíèåì ïàðàìåòðàk = 0.0533) è ïðîöåäóðó ïðîäîëæåíèÿ ïî ïàðàìåòðó, ìîæíî â ñèñòåìå (1.11)ëîêàëèçîâàòü ñêðûòîå êîëåáàíèå (ñì. Ðèñ. 3.25).Listing 3.1:123456function dz = fSys_lin_in_eps (t , z , A0 , b , c , mu , k , eps )dz = zeros (4 ,1);dz = A0 *z + eps *( b* sat_low (c '*z , mu )- k*b*c '* z );endListing 3.2:123sat_low.m: Ôóíêöèÿ, çàäàþùàÿ íåëèíåéíîñòüfunction f = sat_low (x ,m )f = 1/2*( abs (x + m) - abs (x - m ));endListing 3.3:12345678910111213141516171819202122232425fSys_lin_in_eps.m: Ñèñòåìà (1.11)function mainmain.m: Ëîêàëèçàöèÿ ñêðûòîãî õàîòè÷åñêîãî êîëåáàíèÿclear allclose allsyms m ' real '% Matrices of system \ dot x = Px + q\ sat_ { low }( q* x );P = [ 0, 0 , 1.