Диссертация (1145368), страница 17
Текст из файла (страница 17)
 îáùåì ñëó÷àå, êîãäà íåò ñèììåòðèè ïî îòíîøåíèÿ ê ωΔ ,íåîáõîäèìî ðàññìàòðèâàòü íåñèììåòðè÷íûé èíòåðâàë, ñîäåðæàùèé íóëü, âÎïðåäåëåíèè 13.freeÀíàëîãè÷íî ìíîæåñòâó óäåðæàíèÿ è çàõâàòà ìîæíî ðàññìîòðåòü ðàñøèðåíèåïîëîñû çàõâàòà áåç ïðîñêàëüçûâàíèÿ:Ω⊃lock-in[0, ωl ), îäíàêî òàêîåðàñøèðåíèå, âîîáùå ãîâîðÿ, ìîæåò áûòü îäíîçíà÷íûì.åñëè ñõåìàÔÀÏ íàõîäèòñÿ â ñèíõðîííîì ðåæèìå, òî ïîñëå ðåçêîãî èçìåíåíèÿ ωΔâíóòðè ïîëîñû çàõâàòà áåç ïðîñêàëüçûâàíèÿ [0, ωl ) ñèñòåìà âòÿãèâàåòñÿ âñèíõðîíèçì áåç ïðîñêàëüçûâàíèÿ, åñëè íå ïðåðûâàòü ïåðåõîäíûé ïðîöåññ.Îïðåäåëåíèå ìîæíî ïåðåôðàçèðîâàòü ñëåäóþùèì îáðàçîì:freeÎêîí÷àòåëüíî äëÿ ðàññìîòðåííûõ âûøå îïðåäåëåíèé ïîëó÷àåì Ωlock-in ⊂Ωpull-in⊂Ωhold-in,[0, ωl ) ⊂ [0, ωp ) ⊂ [0, ωh ),÷òî ñîãëàñóåòñÿ ñ êëàññè÷åñêèì ðàññìîòðåíèåì.3.2.4 Àïïðîêñèìàöèÿ ïîëîñû çàõâàòà áåç ïðîñêàëüçûâàíèÿäëÿ êëàññè÷åñêîé ÔÀÏÄëÿ ñëó÷àÿ êëàññè÷åñêîé íå÷åòíîé õàðàêòåðèñòèêè ÔÀÏ (ñì.
Ðèñ. 3.10),ïðèíèìàÿâîâíèìàíèå,÷òîñîñòîÿíèÿðàâíîâåñèÿïðîïîðöèîíàëüíûîòêëîíåíèþ ÷àñòîò (ñì. (3.26)), è èñïîëüçóÿ ñèììåòðèþ xeq (ωl ), θeq (ωl )− xeq (−ωl ), θeq (−ωl ) , ìîæíî ýôôåêòèâíî îïðåäåëèòü ωl .=Äëÿ ýòîãî íàäîfree| íà êàæäîì øàãåïîñëåäîâàòåëüíî óâåëè÷èâàòü îòêëîíåíèå ÷àñòîò |ωΔfree= ω ìãíîâåííîóâåëè÷åíèÿ ïîñëå âòÿãèâàíèÿ â ñèíõðîíèçì èçìåíÿòü ωΔfree= −ω è ïðîâåðÿòü âòÿíåòñÿ ëè ñõåìà ÔÀÏ â ñèíõðîíèçì áåçíà ωΔïðîñêàëüçûâàíèÿ.free| ïðèíàäëåæèòÅñëè äà, òî ðàññìîòðåííîå çíà÷åíèå |ωΔïîëîñå çàõâàòà áåç ïðîñêàëüçûâàíèÿ Ωlock-in .Ωpull-infreeÅñëè ωΔ= 0 ïðèíàäëåæèò, òî 0 ïðèíàäëåæèò Ωlock-in (ñì.
Ðèñ. 3.10, ñëåâà). Ïðåäåëüíîå çíà÷åíèå ωlfree > ωl ,îïðåäåëÿåòñÿ èç Ðèñ. 3.10, ñðåäíèé. Íà ñëåäóþùåì øàãå, êîãäà |ωΔ| = |ω|free òðàåêòîðèÿ èç íà÷àëüíîé òî÷êè, ñîîòâåòñòâóþùåé óñòîé÷èâîìóäëÿ ωΔ= −|ω|freeñîñòîÿíèþ ðàâíîâåñèÿ äëÿ ωΔ= |ω|(ñì.Ðèñ. 3.10, ñïðàâà:êðàñíàÿ129òðàåêòîðèÿ, âûõîäÿùàÿ èç ÷åðíîé òî÷êè), ïðèòÿíåòñÿ ê ñîñòîÿíèþ ðàâíîâåñèÿñ ïðîñêàëüçûâàíèåì öèêëà.UHGQHJDWLYHȦ¨freeEODFNSRVLWLYHȦ¨free0.060.040.02x0−0.02−0.04−0.06−50θΔ510Ðèñóíîê 3.11: Ôàçîâûé ïîðòðåò.
Ëîêàëüíûå îáëàñòè ïðèòÿæåíèÿ áåçïðîñêàëüçûâàíèÿ (çàøòðèõîâàíû): âåðõíèå ÷åðíûì äëÿ ωΔ = 61.5, íèæíååêðàñíûì äëÿ ωΔ = −61, 5. Ðàâíîìåðíàÿ îáëàñòü çàõâàòà áåçïðîñêàëüçûâàíèÿ ïðèáëèæàåòñÿ ïîëîñîé ìåæäó äâóìÿ ñèíèìè ëèíèÿìè:|x| ≤ 0.0110..freefreeÍà Ðèñ. 3.10, ñðåäíèé, ìíîæåñòâî D: ñîäåðæèò âñå ñîñòîÿíèÿðàâíîâåñèÿ xeq (ωΔ ) äëÿ 0 ≤ |ωΔ | < ωl . Îäíàêî äëÿ íåêîòîðûõ íà÷àëüíûõäàííûõ îòëè÷íûõ îò ñîñòîÿíèé ðàâíîâåñèÿ èç ïîëîñû, îïðåäåëÿåìîé {x : |x| <|xeq (ωl )|} (íà÷àëüíàÿ ðàñôàçèðîâêà θΔ ïðèíèìàåò âñå âîçìîæíûå çíà÷åíèÿ),ìîãóò íàáëþäàòüñÿ ïðîñêàëüçûâàíèÿ.
Íàïðèìåð, òî÷êè ñëåâà è ñïðàâà îò÷åðíûõ ñîñòîÿíèé ðàâíîâåñèÿ (ò.å. äëÿ ωΔ = |ωl | > 0), ëåæàùèõ âûøå êðàñíîélock-infreefreefree130freeñåïàðàòðèñû (ò.å. äëÿ ωΔ= −|ωl | < 0), ñîîòâåòñòâóþò êðàñíûì òðàåêòîðèÿìfree(ò.å. äëÿ ωΔ= −|ωl | < 0), êîòîðûå ïðèòÿãèâàþòñÿ ê íåêîòîðîìó ñîñòîÿíèþðàâíîâåñèÿ òîëüêî ïîñëå ïðîñêàëüçûâàíèÿ öèêëà. ×òîáû àïïðîêñèìèðîâàòüDlock-in ïîëîñîé, ωl ìîæåò áûòü íåìíîãî óìåíüøåíî òàê, ÷òîáû îáðåçàòüðàññìîòðåííûå âûøå òî÷êè. Íà Ðèñ. 3.11 ïîëîñà, îïðåäåëÿåìàÿ Xlock-in = {x :|x| < |xeq (ω l )|, ω l < ωl }, ñîäåðæèòñÿ â Dlock-in è äëÿ ëþáîãî íà÷àëüíîãî äàííîãîèç ïîëîñû ñîîòâåòñòâóþùèé ïåðåõîäíûé ïðîöåññ, åñëè åãî íå ïðåðûâàòü,ïðèâîäèò áåç ïðîñêàëüçûâàíèÿ ê ñèíõðîííîé ðàáîòåÇàìå÷àíèå 9. Åñëè (ñì., íàïðèìåð, [254, ñòð.92]) îïðåäåëÿòüïðîñêàëüçûâàíèå öèêëîâ äëÿ èíòåðâàëà 2π âìåñòî 4π â Îïðåäåëåíèè 11:ò.å.
lim supt→∞ |θΔ(0) − θΔ(t)| > π, òî äëÿ ëþáîãî |ωΔ | > 0 ðàññòîÿíèåìåæäó ñîñåäíèìè íåóñòîé÷èâîé è óñòîé÷èâîé òî÷êàìè è èçìåíåíèåôàçû ñîîòâåòñòâóþùåé ñåïàðàòðèñû ìîãóò ïðåâûñèòü π (ñì., íàïðèìåð,Ðèñ. 3.11). Òîãäà, ïîëîñà çàõâàòà áåç ïðîñêàëüçûâàíèÿ áóäåò ñîäåðæàòüòîëüêî |ωΔ | = 0.freefreeÇàìå÷àíèå 10. Åñëè èäåàëüíûé èíòåãðàòîð ìîæåò áûòü ðåàëèçîâàí âðàññìàòðèâàåìîé àðõèòåêòóðå, òî ìîæíî ðàññìîòðåòü ìîäåëü ÔÀÏ ñôèëüòðîì ïåðâîãî ïîðÿäêà H(s) = 1+sτsτ .
Óðàâíåíèÿ ìîäåëè â ýòîì ñëó÷àåèìåþò âèä:21ẋ =τ21freeϕ(θΔ ), θ̇Δ = ωΔ− Lx − L ϕ(θΔ )τ1τ1(3.46)1τ2θ̈Δ = −L ϕ(θΔ ) − L ϕ (θΔ )θ̇Δ .τ1τ1(3.47)è ìîãóò áûòü ïåðåïèñàíû êàêÇäåñü ñîñòîÿíèÿ ðàâíîâåñèÿ îïðåäåëÿþòñÿ èç óðàâíåíèéfreeϕ(θeq ) = 0, xeq = ωΔL−1 .Òàê êàê ìîäåëü (3.47) íå çàâèñèò ÿâíî îò ωΔ , òî ïîëîñû óäåðæàíèÿè çàõâàòà ëèáî áåñêîíå÷íûå ëèáî ïóñòûå. Çàìåòèì, ÷òî ïàðàìåòð ωΔñäâèãàåò ôàçîâóþ ïëîñêîñòü âåðòèêàëüíî (ïî ïåðåìåííîé x) áåç èçìåíåíèÿòðàåêòîðèé. Ýòî ñóùåñòâåííî óïðîùàåò àíàëèç ôîðìû ðàâíîìåðíîéfreefree131UHGQHJDWLYHȦ¨freeEODFNSRVLWLYHȦ¨free0.060.040.02x0−0.02−0.04−0.06−50θ510ΔÐèñóíîê 3.12: Ôàçîâûé ïîðòðåò äëÿ êëàññè÷åñêîé ÔÀÏ ñ ïàðàìåòðàìè:freeH(s) = 1+0.0225s0.0633s , L = 250 è ωΔ = ±47.
Ëîêàëüíûå îáëàñòè çàõâàòà áåçfree= 47, íèæíèåïðîñêàëüçûâàíèÿ çàøòðèõîâàíû: âåðõíèå ÷åðíûì äëÿ ωΔfreeêðàñíûì äëÿ ωΔ = −47. Ðàâíîìåðíàÿ îáëàñòü çàõâàòà áåç ïðîñêàëüçûâàíèÿàïïðîêñèìèðîâàíà ïîëîñîé ìåæäó äâóìÿ ñèíèìè ëèíèÿìè: |x| ≤ 0.0119.îáëàñòè çàõâàòà áåç ïðîñêàëüçûâàíèÿ (ñì. Ðèñ. 3.12). Åñëè ïåðåäàòî÷íàÿôóíêöèÿ H(s) ôèëüòðà âûñîêî ïîðÿäêà èìååò ìíîæèòåëü sr ñ r ∈ N âçíàìåíàòåëå, òî âìåñòî íàáîðà òî÷å÷íûõ ñîñòîÿíèé ðàâíîâåñèÿ ìû èìååìñòàöèîíàðíîå ìíîãîîáðàçèå: ϕ(θeq ) = 0, c1 x1eq + . . .
+ cr xreq =free−ωΔL .Äëÿ êëàññè÷åñêîé ÔÀÏ ñ ôèëüòðîì, èìåþùèì ïåðåäàòî÷íóþ ôóíêöèþH(s)=β+αss ,ìîæíî àíàëèòè÷åñêè äîêàçàòü,ÿâëÿåòñÿ áåñêîíå÷íîé.÷òî ïîëîñà çàõâàòàÍåêîòîðûå íåîáõîäèìûå ðàññóæäåíèÿ ïðèâåäåíûâ êëàññè÷åñêîé ìîíîãðàôèè Viterbi [294] ïðè ïîìîùè àíàëèçà ôàçîâîãîïëîñêîñòè.
Îäíàêî ñòðîãîå ðàññìîòðåíèå ïîâåäåíèÿ òðàåêòîðèé íà ôàçîâîé132ïëîñêîñòè ÿâëÿåòñÿ òðóäíîé çàäà÷åé (ñì., íàïðèìåð, äèñêóññèþ â [253];òàê, íàïðèìåð, äîêàçàòåëüñòâî îòñóòñòâèÿ ãåòåðîêëèíè÷åñêèõ òðàåêòîðèéè öèêëîâ ïåðâîãî ðîäà â [294] íå ïðèâåäåíî). Ñòðîãîå äîêàçàòåëüñòâîìîæíî ýôôåêòèâíî ïðîâåñòè ïðè ïîìîùè ôóíêöèè Ëÿïóíîâà [51, 183, 253]:ω 22 θΔ2V (x, θΔ ) = 12 x − ΔL+ 2βL sin 2 ≥ 0 è V̇ (x, θΔ ) = −hβ sin θΔ ≤ 0. Çäåñüâàæíî ïîêàçàòü, ÷òî äëÿ ëþáîãî çíà÷åíèÿ ωΔ ìíîæåñòâî V̇ (x, θΔ ) ≡ 0 íåñîäåðæèò öåëûõ òðàåêòîðèé ñèñòåìû (3.46), êðîìå ñîñòîÿíèé ðàâíîâåñèÿ.freefree3.2.5 Íà÷àëüíàÿ è ñîáñòâåííàÿ ÷àñòîòû ÏÃÎòìåòèì, ÷òî â Îïðåäåëåíèÿõ 8, 10, è 13 ïîëîñû óäåðæàíèÿ, çàõâàòàè çàõâàòà áåç ïðîñêàëüçûâàíèÿ îïðåäåëÿþòñÿ äëÿ îòêëîíåíèÿ ñîáñòâåííûõ÷àñòîò, ò.å.äëÿ ìîäóëÿ ðàçíîñòè ìåæäó ñîáñòâåííîé ÷àñòîòîé Ïà (âðàçîìêíóòîé öåïè) è ÷àñòîòîé âõîäíîãî ñèãíàëà:free|ωΔ| = |ω1 − ω2free |.Ñîáñòâåííàÿ ÷àñòîòà Ïà ω2free ìîæåò ñóùåñòâåííî îòëè÷àòüñÿ îò íà÷àëüíîé÷àñòîòû Ïà ω2 (0): ω2 (0) = ω2free + g(0), ãäå g(0) = c∗ x(0) + hϕ(θΔ (0)) çíà÷åíèåñèãíàëà óïðàâëåíèÿ â íà÷àëüíûé ìîìåíò âðåìåíè, çàâèñÿùåå îò íà÷àëüíîãîñîñòîÿíèÿ ôèëüòðà x(0) è íà÷àëüíîé ðàñôàçèðîâêè θΔ (0).Èíòåðåñíî, ÷òî äëÿ êëàññè÷åñêîé óïðîùåííîé ìîäåëè (3.27) ñ h = 0 (ñì.óðàâíåíèå 2.20 â êëàññè÷åñêîé ìîíîãðàôèè [294]) ìîäóëü ðàçíîñòè íà÷àëüíûõ÷àñòîò |θ̇Δ (0)| = |ωΔ (0)| = |ω1 − ω2 (0)| ðàâåí îòêëîíåíèþ ñîáñòâåííûõ ÷àñòîòfree| = |ω1 − ω2free |.
Ñëåäóÿ, ýòîìó óïðîùåííîìó ðàññìîòðåíèþ, â èíæåíåðíîé|ωΔëèòåðàòóðå êîíöåïöèÿ initial frequency dierence ÷àñòî èñïîëüçóåòñÿ âìåñòî frequency deviation: ñì., íàïðèìåð, [110, ñòð.44] If the initial frequency dier-ence (between VCO and input) is within the pull-in range, the VCO frequency willslowly change in a direction to reduce the dierence, [73, ñüî.1792] The maximumfrequency dierence between the input and the output that the PLL can lock withinone single beat note is called the lock-in range of the PLL, [151, ñòð.49] Whetherthe PLL can get synchronized at all or not depends on the initial frequency difference between the input signal and the output of the controlled oscillator. Âîáùåì ñëó÷àå, çàìåíà ω2free íà ω2 (0) ìîæåò ïðèâîäèòü ê íåâåðíûì ðåçóëüòàòàìâ îïðåäåëåíèè ïîëîñ, òàê êàê äëÿ x(0) = 0, h = 0 èëè õàðàêòåðèñòèêè ÔÄϕ(θΔ ), íå ÿâëÿþùåéñÿ íå÷åòíîé, ïðè îäíèõ è òåõ æå çíà÷åíèÿõ ω2 (0) ìîäåëüÔÀÏ ìîæåò âòÿãèâàòüñÿ â ñèíõðîíèçì èëè íåò, â çàâèñèìîñòè îò íà÷àëüíîãî133ñîñòîÿíèÿ ôèëüòðà x(0), íà÷àëüíîé ðàçíîñòè ôàç θΔ (0), è ω2free .
Íèæå ïðèâåäåíñîîòâåòñòâóþùèé ïðèìåð.Ïðèìåð 3. Ðàññìîòðèì ïîâåäåíèå ìîäåëè (3.10) äëÿ ñèíóñîèäàëüíîãî ñèãíàëàè ôèêñèðîâàííûõ ïàðàìåòðîâ: ωΔ = 100, H(s) =(1+sτ )1+s(τ +τ ) , τ1 = 0.0448, τ2 = 0.0185, L = 250. Íà Ðèñ. 3.13 ïðåäñòàâëåí ôàçîâûéïîðòðåò ñèñòåìû (3.10). Ñèíÿÿ ïóíêòèðíàÿ êðèâàÿ ñîñòîèò èç òî÷åê,êîòîðûì ñîîòâåòñòâóåò íóëåâàÿ íà÷àëüíàÿ ðàçíîñòü ôàç: ωΔ(0) = θ̇Δ(0) =0. Íåñìîòðÿ íà òî, ÷òî íà÷àëüíàÿ ðàçíîñòü ÷àñòîò âñå òðàåêòîðèé ñíà÷àëüíûìè äàííûìè íà ñèíåé ïóíêòèðíîé êðèâîé îäèíàêîâà è ðàâíà íóëþ,çåëåíàÿ òðàåêòîðèÿ âòÿãèâàåòñÿ â ñèíõðîíèçì, à ìàëèíîâàÿ íåò.(ò.å.ϕ(θΔ ) =12sin(2θΔ ))2120.060.050.040.03x0.020.010−0.01−0.020(blue) zero initial frequency diffirence Ȧ (0)Δ(magenta) tends to infinity(green) tends to a locked state24θΔ6810freeÐèñóíîê 3.13: Ôàçîâûé ïîðòðåò äëÿ ωΔ= 100. Ñèíÿÿ ïóíêòèðíàÿ êðèâàÿñîîòâåòñòâóåò θ̇Δ (0) = 0. Íà÷àëüíûå òî÷êè çåëåíîé è ìàëèíîâûõ òðàåêòîðèéñîîòâåòñòâóþò ωΔ (0) = 0.1343.3 Ñêðûòûå êîëåáàíèÿ â äâóõôàçíîé ÔÀÏÐàññìîòðèì äâóõôàçíóþ ÔÀÏ íà Ðèñ.
3.14.cos(θ1(t))Hilbertsin(θ1(t))Çäåñü âõîäíîé ñèãíàëφ(t)=sin(θ1(t)-θ2(t))Complexmultipliercos(θ2(t))VCOsin(θ2(t))g(t) LoopFilterÐèñóíîê 3.14: Äâóõôàçíàÿ ÔÀÏcos(θ1 (t)) ñ ôàçîé θ1 (t) è âûõîä ôàçîâîãî âðàùàòåëÿ (Hilbert block) sin(θ1 (t)).Ïîäñòðàèâàåìûé ãåíåðàòîð ãåíåðèðóåò ñèãíàëû sin(θ2 (t)) è cos(θ2 (t)) ñ ôàçîéθ2 (t). Íà Ðèñ.
3.15 ïîêàçàíà áëîê-ñõåìà ôàçîâîãî äåòåêòîðà (ïåðåìíîæèòåëüêîìïëåêñíûõ ÷èñåë).Ôàçîâûé äåòåêòîð ñîñòîèò èç äâóõ àíàëîãîâûõsin(θ1(t))cos(θ2(t))+cos(θ1(t))-sin(θ1(t)-θ2(t))sin(θ2(t))Ðèñóíîê 3.15: Ôàçîâûé äåòåêòîð äâóõôàçíîé ÔÀÏïåðåìíîæèòåëåé è âû÷èòàíèÿ.Âûõîä ÔÄ ϕ(t) = sin(θ1 (t)) cos(θ2 (t)) −cos(θ1 (t)) sin(θ2 (t)) = sin(θ1 (t) − θ2 (t)).
Îòìåòèì, ÷òî â äâóõôàçíîé ÔÀÏ135íåò âûñîêî÷àñòîòíîãî ïàðàçèòíîãî ñèãíàëà íà âûõîäå ÔÄ. Äëÿ ñîîòâåòñòâèÿêëàññè÷åñêîé ÔÀÏ ââåäåì çäåñü êîýôôèöèåíò óñèëåíèÿ ÔÄ 12ϕ(t) =1sin(θ1 (t) − θ2 (t)).2(3.48)Ðàññìîòðèì ôèëüòð ñ ïåðåäàòî÷íîé ôóíêöèåé H(s). Ñîîòíîøåíèå ìåæäóâõîäîì ôèëüòðà ϕ(t) è åãî âûõîäîì g(t) èìååò âèäẋ = Ax + bϕ(t),g(t) = c∗ x + hϕ(t),(3.49)H(s) = c∗ (A − sI)−1 b − h.Óïðàâëÿþùèé ñèãíàë g(t) èñïîëüçóåòñÿ äëÿ ïîäñòðîéêè ôàçû Ïà ê ôàçåâõîäíîãî ñèãíàëà:θ2 (t) = t0ω2 (τ )dτ = ω2f ree t + L t0(3.50)g(τ )dτ,ãäå ω2free ñâîáîäíàÿ ÷àñòîòà Ïà (ò.å.