Диссертация (1145368), страница 15
Текст из файла (страница 15)
3.3 è 3.4).3.2 Ïîíÿòèÿ äèàïàçîíîâ óñòîé÷èâîñòèÂàæíîé õàðàêòåðèñòèêîé ÔÀÏ ÿâëÿåòñÿ ìíîæåñòâî îòêëîíåíèé ÷àñòîòû,äëÿ êîòîðûõ ÔÀÏ âòÿãèâàåòñÿ â ñèíõðîíèçì, òî åñòü ïðîèñõîäèò ïîäñòðîéêà5 Ìîæíîñòðîãî ïîêàçàòü, ÷òî åñëè ôèëüòð ÿâëÿåòñÿ óïðàâëÿåìûì è íàáëþäàåìûì, òî òîëüêî ñîñòîÿíèÿðàâíîâåñèÿ ñîîòâåòñòâóþò ðàáî÷èì ðåæèìàì, ò.î. ñîñòîÿíèå ôèëüòðà äîëæíî áûòü ïîñòîÿííûì äëÿ ðàáî÷åãîðåæèìà [183].112ôàç ñèãíàëîâ è ïåðåõîä â ðàáî÷èé ðåæèì.  ïåðâûõ êëàññè÷åñêèõ ìîíîãðàôèÿõïî ÔÀÏ [34, 110, 294], îïóáëèêîâàííûõ â 1966, ââåäåíû òàêèå ïîíÿòèÿ êàê:ïîëîñà óäåðæàíèÿ (hold-in):õàðàêòåðèçóåò âîçìîæíîñòü âòÿãèâàíèÿ âñèíõðîíèçì;ïîëîñà çàõâàòà (pull-in):õàðàêòåðèçóåò îáÿçàòåëüíîå âòÿãèâàíèå âñèíõðîíèçì;ïîëîñà çàõâàòà áåç ïðîñêàëüçûâàíèÿ (lock-in):õàðàêòåðèçóþò áûñòðîåâòÿãèâàíèå â ñèíõðîíèçì.Îíè øèðîêî èñïîëüçóþòñÿ â ñîâðåìåííîé ëèòåðàòóðå (ñì., íàïðèìåð,ìîíîãðàôèè [57, 112]). ×àñòî äëÿ ýòèõ ïîíÿòèé èíæåíåðû ïðèâîäÿò òîëüêîíåñòðîãèå îïðåäåëåíèÿ.Èçâåñòíûé èíæåíåð F.
Gardner â 19796 âî âòîðîìèçäàíèè ñâîåé ìîíîãðàôèèPhaselock Techniquesñôîðìóëèðîâàë ñëåäóþùóþïðîáëåìó [111, ñòð.70] (ñì. òàêæå òðåòüå èçäàíèå [112, ñòð.187-188]): Thereis no natural way to dene exactly any unique lock-in frequency. Îòñóòñòâèåñòðîãèõ ìàòåìàòè÷åñêèõ îïðåäåëåíèé ïðèâåëî ê ïàðàäîêñó: despite its vaguereality, lock-in range is a useful concept [111, ñòð.70].
Âñå ýòî ïîñëå ìíîãèõëåò èñïîëüçîâàíèÿ èíæåíåðíûõ èíòóèòèâíûõ îïðåäåëåíèé â ìîíîãðàôèè [151,ñòð.49] äàí ñîâåò check these denitions carefully before using them [151, ñòð.49].Èñïîëüçîâàíèå íåñòðîãèõ îïðåäåëåíèé ñâÿçàíî îò÷àñòè ñ óïðîùåííûìâûâîäîì ìàòåìàòè÷åñêèõ ìîäåëåé ÔÀÏ, ïðåäëîæåííûì â êëàññè÷åñêèõðàáîòàõ. Øèðîêî èñïîëüçóåìîå èíæåíåðíîå ïðåäïîëîæåíèå (ñì., íàïðèìåð,êëàññè÷åñêóþ êíèãó Viterbi [294, ñòð.15]) çàêëþ÷àåòñÿ â òîì, ÷òî äëÿóñòîé÷èâûõ ôèëüòðîâ ôóíêöèÿ α0 (t, x0 ) íå âëèÿåò íà âòÿãèâàíèå â ñèíõðîíèçìÔÀÏ. Ýòî ïðåäïîëîæåíèå ïîçâîëÿåò èñêëþ÷èò ñîñòîÿíèå ôèëüòðà x(t) èçðàññìîòðåíèÿ è ïîñòðîèòü óïðîùåííóþ ìàòåìàòè÷åñêóþ ìîäåëü ÔÀÏ âïðîñòðàíñòâå ôàç ñèãíàëîâ èç (3.9) è (3.3) (ñì., íàïðèìåð, [294, ñòð.17, óð.2.20]ïðè h = 0 è [110, ñòð.41, óð.4-26] ïðè γ ≡ 0):freeθ̇Δ = ωΔ−LÍàîñíîâåýòîãî t0γ(t − τ )ϕ(θΔ (τ ))dτ − Lhϕ(θΔ (t)).îäíîìåðíîãîèíòåãðî-äèôôåðåíöèàëüíîãîîïðåäåëÿþòñÿ ñëåäóþùèå èíòåðâàëû ( [110, 294]):6 Ãîäîì(3.27)óðàâíåíèÿïîëîñà óäåðæàíèÿ (theñïóñòÿ, â 1980, F.Gardner áûë èçáðàí IEEE Fellow for contributions to the understanding andapplications of phase lock loops.113freehold-in range) âêëþ÷àåò â ñåáÿ îòêëîíåíèÿ ÷àñòîò |ωΔ| òàêèå, ÷òî ìîäåëü(3.27) èìååò íåêîòîðîå ëîêàëüíî óñòîé÷èâîå ñîñòîÿíèå ðàâíîâåñèÿ θΔ (t) ≡ θeq(ò.å.çäåñü òðåáóåòñÿ ëîêàëüíàÿ óñòîé÷èâîñòü ïðè íåêîòîðûõ íà÷àëüíûõfree|ðàñôàçèðîâêàõ θΔ (0)); ïîëîñà çàõâàòà (the pull-in range) âêëþ÷àåò â ñåáÿ |ωΔòàêèå, ÷òî ëþáîå ðåøåíèå ìîäåëè (3.27) ïðèòÿãèâàåòñÿ ê îäíîìó èç ñîñòîÿíèéðàâíîâåñèé (íåîáÿçàòåëüíî óñòîé÷èâîìó) θeq (ò.å.
çäåñü òðåáóåòñÿ ãëîáàëüíàÿóñòîé÷èâîñòü ïðè âñåõ íà÷àëüíûõ ðàñôàçèðîâêàõ θΔ (0)).Òàêèì îáðàçîìáëîê-äèàãðàììà íà Ðèñ. 3.2 îáû÷íî ðàññìàòðèâàåòñÿ áåç íà÷àëüíîãî ñîñòîÿíèÿx(0) è θΔ (0) (ñì., íàïðèìåð, [294, ñòð.17, Ðèñ.2.3]).Îòìåòèì, ÷òî Viterbi [294] îáúÿñíÿåò ðàññìîòðåííîå âûøå ïðåäïîëîæåíèåòîëüêî äëÿ óñòîé÷èâîé ìàòðèöû A, íî äàëåå ðàññìàòðèâàåò òàêæå ðàçëè÷íûåôèëüòðû ñ ìàòðèöàìè, èìåþùèìè íóëåâûå ñîáñòâåííûå çíà÷åíèÿ (íàïðèìåð,ôèëüòð èäåàëüíûé èíòåãðàòîð, ãäå A = 0).Îäíàêî äàæå â ñëó÷àå óñòîé÷èâîé ìàòðèöû A íà÷àëüíîå ñîñòîÿíèå ôèëüòðàx(0) è ôóíêöèÿ α0 (t, x0 ) ìîãóò âëèÿòü íà ïðîöåññ ñèíõðîíèçàöèè è ïîëîñûóñòîé÷èâîñòè (ñì., íàïðèìåð, ñîîòâåòñòâóþùèå ïðèìåðû äëÿ êëàññè÷åñêîéÔÀÏ â [212] è äëÿ êëàññè÷åñêîé ñõåìû Êîñòàñà â [64, 237, 274, 277]). òî âðåìÿ êàê ðàññìîòðåííîå âûøå ïðåäïîëîæåíèå ïîçâîëèëî ââåñòèfreeîäíîìåðíûå ïîëîñû óñòîé÷èâîñòè, îïðåäåëÿåìûå òîëüêî |ωΔ|, äëÿ ñòðîãîãîèçó÷åíèÿ îáëàñòåé óñòîé÷èâîñòè èñõîäíîé ìîäåëè íåîáõîäèìî ó÷èòûâàòüíà÷àëüíîå ñîñòîÿíèå ôèëüòðà x(0) (ñì., íàïðèìåð, [270]).
Òàêæå â êíèãå [112,ñòð.187] îòìå÷àåòñÿ, ÷òî ðàññìîòðåíèå âñåõ ïåðåìåííûõ ÿâëÿåòñÿ íåîáõîäèìûìäëÿ èçó÷åíèÿ ïðîñêàëüçûâàíèÿ öèêëîâ (cycle slips) è äëÿ êîíöåïöèè ïîëîñûçàõâàòà áåç ïðîñêàëüçûâàíèé (lock-in ).Íèæå ðàññìîòðåíû âîçìîæíûå ñòðîãèå îïðåäåëåíèÿ ìíîæåñòâ îòêëîíåíèÿ÷àñòîòû, ñîîòâåòñòâóþùèõ óäåðæàíèþ, çàõâàòó è çàõâàòó áåç ïðîñêàëüçûâàíèé,äëÿ íåëèíåéíîé ìàòåìàòè÷åñêîé ìîäåëè ÔÀÏ â ïðîñòðàíñòâå ôàç ñèãíàëîâ(3.10).1143.2.1 Ëîêàëüíàÿ óñòîé÷èâîñòü è ïîëîñà óäåðæàíèÿÐàññìîòðèì ëèíåàðèçàöèþ7 ñèñòåìû (3.10) â îêðåñòíîñòè ñîñòîÿíèÿðàâíîâåñèÿ (xeq , θeq ). Ó÷èòûâàÿ (3.26) è ϕ (θ) := dϕ(θ)/dθ, ëèíåàðèçîâàííàÿñèñòåìà èìååò âèä:⎛⎜⎝ẋθ̇Δ⎞⎛⎟⎠⎝=⎜Abϕ (θeq )−Lc∗ −Lhϕ (θeq )⎞⎛⎟⎜⎠⎝x − xeqθΔ − θeq⎞⎟⎠.(3.28)Õàðàêòåðèñòè÷åñêèé ïîëèíîì ëèíåéíîé ñèñòåìû (3.10) ìîæåò áûòü ïðåäñòàâëåíâ âèäå (èñïîëüçóÿ ëåììó Øóðà, ñì., íàïðèìåð, [183]):χ(s) = − Lhϕ (θeq ) − s + Lc∗ (A − sI)−1 bϕ (θeq ) det(A − sI)èëè ìîæåò áûòü ïðåäñòàâëåí ÷åðåç ïåðåäàòî÷íóþ ôóíêöèþ ôèëüòðà H(s) =a(s)d(s) ,ãäå a(s) è d(s) íåêîòîðûå ïîëèíîìû:χ(s) = − sd(s) + a(s)Lϕ (θeq ) .Õàðàêòåðèñòè÷åñêèéïîëèíîìñîîòâåòñòâóåò(3.29)çíàìåíàòåëþïåðåäàòî÷íîéôóíêöèè çàìêíóòîé öåïè.
Äëÿ èçó÷åíèÿ ëîêàëüíîé óñòîé÷èâîñòè ñîñòîÿíèéðàâíîâåñèÿ (3.26) íàäî ïðîâåðèòü, ÷òî âñå íóëè õàðàêòåðèñòè÷åñêîãî ïîëèíîìà(3.29) èìåþò îòðèöàòåëüíóþ âåùåñòâåííóþ ÷àñòü.Äëÿ ýòîãî íà ñòàäèèïðîåêòèðîâàíèÿ (pre-design analysis), êîãäà âñå çíà÷åíèÿ ïàðàìåòðîâ èçâåñòíûòî÷íî, ìîæåò ýôôåêòèâíî ïðèìåíÿòüñÿ êðèòåðèé ÐàóñàÃóðâèöà (ñì. òàêæåîáîáùåíèå Õàðèòîíîâà [150] äëÿ èíòåðâàëüíûõ ïîëèíîìîâ).Íà ñòàäèèàíàëèçà óæå ãîòîâîé ñèñòåìû (post-design analysis ), êîãäà çíà÷åíèÿ ïàðàìåòðîâèçâåñòíû ïðèáëèçèòåëüíî,èíæåíåðû èñïîëüçóþò ðàçëè÷íûå ÷àñòîòíûåõàðàêòåðèñòèêè (ñì., íàïðèìåð, [57, 112]).Åñëè õàðàêòåðèñòèêà ÔÄ ÿâëÿåòñÿ ÷åòíîé ôóíêöèåé è ñëåäîâàòåëüíî ϕ (θeq ) íå÷åòíàÿ ôóíêöèÿ, òî èç (3.24) ñëåäóåò, ÷òî7 Çäåñü ïðåäïîëàãàåòñÿ, ÷òî õàðàêòåðèñòèêà ÔÀÏ ϕ(θ ) ÿâëÿåòñÿ ãëàäêîé â òî÷êå θ = θ . ÎäíàêîeqΔΔñóùåñòâóþò ñõåìû ÔÀÏ ñ íåãëàäêèìè è ðàçðûâíûìè õàðàêòåðèñòèêàìè (ñì., íàïðèìåð, [112], [275] è [43, 60,101]).
 ýòîì ñëó÷àå íàäî îòäåëüíî çàáîòèòüñÿ îá îïðåäåëåíèè ðåøåíèÿ, ëèíåàðèçàöèè è àíàëèçå ñêîëüçÿùèõðåæèìîâ (ñì., íàïðèìåð, [295]).1151) Ñîñòîÿíèÿ ðàâíîâåñèÿ â ñèñòåìå ñèììåòðè÷íû:freefreefreefreexeq (ωΔ), θeq (ωΔ) = − xeq (−ωΔ), −θeq (−ωΔ) .2) ñèììåòðè÷íûå ñîñòîÿíèÿ ðàâíîâåñèÿ îäíîâðåìåííî óñòîé÷èâû èëèíåóñòîé÷èâû.Îïðåäåëåíèå 8. Ìíîæåñòâî òàêèõ îòêëîíåíèé ÷àñòîòû |ωΔ |,÷òî ìàòåìàòè÷åñêàÿ ìîäåëü â ïðîñòðàíñòâå ôàç ñèãíàëîâ èìååòëîêàëüíî àñèìïòîòè÷åñêè óñòîé÷èâîå ñîñòîÿíèå ðàâíîâåñèÿ, íàçûâàåòñÿìíîæåñòâîì óäåðæàíèÿ Ω .freehold-inÄðóãèìè ñëîâàìè, çíà÷åíèå îòêëîíåíèÿ ÷àñòîòû ïðèíàäëåæèò ìíîæåñòâóóäåðæàíèÿ, åñëè íåáîëüøèå âîçìóùåíèÿ ñîñòîÿíèÿ ìîäåëè íå âëåêóò âûõîäìîäåëè èç ñèíõðîíèçìà.Ýòîò ýôôåêò òàêæå íàçûâàåòñÿ ñòàòè÷åñêîéóñòîé÷èâîñòüþ (steady-state stability).0.90.80.70.6x 0.40.30.20.1ï0e106freeÐèñóíîê 3.3: Ôàçîâûé ïîðòðåò (x(t), θΔ (t)) äëÿ ωΔèç ìíîæåñòâà óäåðæàíèÿ.116Äëÿ ÷àñòîò,êîòîðûå ñîîòâåòñòâóþò ìíîæåñòâó óäåðæàíèÿ,ìîäåëü,íàõîäÿùàÿñÿ â ñîñòîÿíèè ðàâíîâåñèÿ, îòñëåæèâàåò ìàëûå èçìåíåíèÿ ÷àñòûâõîäÿùåãî ñèãíàëà, ò.å.
äîñòèãàåò íîâîãî ñîñòîÿíèÿ ðàâíîâåñèÿ (tracking process).Âñîâðåìåííîéèíæåíåðíîéëèòåðàòóðåîïðåäåëåíèÿ ïîëîñû óäåðæàíèÿ: Theìîæíîíàéòèñëåäóþùèåhold-in range is obtained by calculating the frequency where the phase error is at its maximum [66, ñòð.171], Themaximum frequency dierence before losing lock of the PLL system is called thehold-in range [154, ñòð.258].Ñëåäóþùèåïðèìåðûïîêàçûâàþò,÷òîòàêèåîïðåäåëåíèÿíåêîððåêòíûìè â ñëó÷àå ôèëüòðîâ âûñîêîãî ïîðÿäêà,ìîãóòáûòüòàê êàê ìíîæåñòâîóäåðæàíèÿ ìîæåò áûòü íå ñâÿçíûì.ÑëåäóþùèéñîäåðæàòüÏðèìåðïðèìåðïîêàçûâàåò,÷òîìíîæåñòâîóäåðæàíèÿìîæåòíåfreeωΔ= 0.1.Ðàññìîòðèì êëàññè÷åñêóþ ÔÀÏ ñ ñèíóñîèäàëüíîéõàðàêòåðèñòèêîé ÔÄ ϕ(θΔ) = 12 sin(θΔ), êîýôôèöèåíòîì óñèëåíèÿ ÏÃL = 8 (VCO input gain) è ïåðåäàòî÷íîé ôóíêöèåé ôèëüòðàH(s) =1 + 0.5sa(s).=d(s) 1 + 0.5s + 0.5s2(3.30)Èç (3.26) ïîëó÷èì ñëåäóþùèå óðàâíåíèÿ äëÿ îïðåäåëåíèÿ ñîñòîÿíèéðàâíîâåñèÿ:11 freesin(θeq ) = ωΔ.28(3.31)Ïðèìåíÿÿ êðèòåðèé óñòîé÷èâîñòè ÐàóñàÃóðâèöà ê çíàìåíàòåëþïåðåäàòî÷íîé ôóíêöèè çàìêíóòîé ìîäåëè (3.29)8s3 + s2 + s(2 + 4 cos(θeq )) + 8 cos(θeq ),8Ó(3.32)χ(s) = a3 s3 +a2 s2 +a1 s+a0 âñå êîðíè èìåþò îòðèöàòåëüíûå âåùåñòâåííûå432÷àñòè, åñëè a1,2,3 > 0 è a2 a1 > a3 a0 .
Äëÿ χ(s) = a4 s + a3 s + a2 s + a1 s + a0 äîëæíî âûïîëíÿòüñÿ a1,2,3,4 > 0,22a3 a2 > a4 a1 è a3 a2 a1 > a4 a1 + a3 a0 .ïîëèíîìà òðåòüåãî ïîðÿäêà117x0ïïïï01020e3040506freeÐèñóíîê 3.4: Ôàçîâûé ïîðòðåò äëÿ ωΔâíå ìíîæåñòâà óäåðæàíèÿ: îòñóòñòâèåëîêàëüíî óñòîé÷èâûõ ñîñòîÿíèé ðàâíîâåñèÿ.ïîëó÷èì ñëåäóþùèå óñëîâèÿ:cos(θeq ) > 0, (2 + 4 cos(θeq )) > 0,(2 + 4 cos(θeq )) > 8 cos(θeq ).Òîãäà(3.33)10 < cos(θeq ) < ,2è äëÿ ñèíõðîííîãî ðåæèìà (ò.å. â ñîñòîÿíèè ðàâíîâåñèÿ) ïîëó÷èì ñëåäóþùóþóñòàíîâèâøóþñÿ ðàñôàçèðîâêóπ ππ πθeq ∈ (− , − ) ∪ ( , ).2 33 2(3.34)Îòñþäà, ó÷èòûâàÿ (3.31) è (3.34), îïðåäåëèì ìíîæåñòâî óäåðæàíèÿ√free|ωΔ| ∈ (2 3, 4).(3.35)118Ñëåäóþùèé ïðèìåð ïîêàçûâàåò, ÷òî ìíîæåñòâî óäåðæàíèÿ ìîæåò íå áûòüèíòåðâàëîì, à ñîñòîÿòü èç íåñêîëüêèõ èíòåðâàëîâ, îäèí èç êîòîðûõ ñîäåðæèòfreeωΔ= 0.Ïðèìåð2.Ðàññìîòðèì êëàññè÷åñêóþ ÔÀÏ ñ ñèíóñîèäàëüíîéõàðàêòåðèñòèêîé ÔÄ ϕ(θΔ) = 12 sin(θΔ), êîýôôèöèåíòîì óñèëåíèÿ ÏÃL = 80, è ïåðåäàòî÷íîé ôóíêöèåé ôèëüòðàH(s) =Èç(3.26)1 + 0.25s + 0.5s2.1 + 2s + 2s2 + 2s3(3.36)ïîëó÷èì ñëåäóþùèå ñîîòíîøåíèÿ äëÿ ñîñòîÿíèé ðàâíîâåñèÿ:11 free.sin(θeq ) = ωΔ280(3.37)Ñîñòîÿíèå ðàâíîâåñèÿ ÿâëÿåòñÿ àñèìïòîòè÷åñêè óñòîé÷èâûì òîãäà èòîëüêî òîãäà, êîãäà âñå êîðíè ïîëèíîìà (3.29):s(1 + 2s + 2s2 + 2s3 ) + K(1 + 0.25s + 0.5s2 ) =2s4 + 2s3 + s2 (2 + 0.5K) + s(1 + 0.25K) + K,(3.38)K = Lϕ (θeq ) = 40 cos(θeq )èìåþò îòðèöàòåëüíûå âåùåñòâåííûå ÷àñòè.óñòîé÷èâîñòè ÐàóñàÃóðâèöà, ïîëó÷èìÏðèìåíÿÿ êðèòåðèé2 + 0.5K > 0, 1 + 0.25K > 0, K > 0,2(2 + 0.5K) > 2(1 + 0.25K),(3.39)2(2 + 0.5K)(1 + 0.25K) > 2(1 + 0.25K)2 + 22 K.Èç ýòèõ íåðàâåíñòâ ñëåäóåò, ÷òî√√K = 40 cos(θeq ) ∈ (0, 12 − 8 2) ∪ (12 + 8 2, ∞),ππθeq ∈ (− , −1.5536) ∪ (−0.9486, 0.9486) ∪ (1.5536, ).22(3.40)Çàìåòèì, ÷òî äëÿ äðóãèõ çíà÷åíèé θeq õîòÿ áû îäèí èç êîðíåé ïîëèíîìà(3.38) èìååò ïîëîæèòåëüíóþ âåùåñòâåííóþ ÷àñòü.
Èç (3.37) è (3.40)|ωΔ | ∈ [0, 32.5) ∪ (39.9942, 40).√L > 24 + 16 2L=80(x(0) = (0; 0; 0.9990), θΔ (0) = 1.5585)ωΔϕGx(0) ≡ 0x(0)θΔ (0)phase_diff100referencefrequency1sIntegrator1sinSubtract0.5PDGain1characteristic1sIntegrator0.5s2+0.25s+12s 3+2s2 +2s+1Transfer Fcn(with initial states)80Gain100-39.997free-runningfrequencyfilter_output120Çàìå÷àíèå 3. Äëÿ ôèëüòðîâ ïåðâîãî ïîðÿäêà ìíîæåñòâî Ωhold-in ÿâëÿåòñÿèíòåðâàëîì |ωΔfree| < ωh.