Диссертация (1144614), страница 24
Текст из файла (страница 24)
J. LaLonde, M.C. Cooper, T. G. Noordewier. – Oak Brook, IL : The Council of Logistics Management,1988. – 162 p.107. LaLonde, B. J. Customer Service: Meaning and Measurement / B. J. LaLonde, P.H. Zinszer. – Chicago, IL : National Council of Physical Distribution Management,1976. – 492 p.108. Lambert, D. M. An evaluation of process-oriented supply chain managementframeworks / D. M. Lambert, S. J.
García-Dastugue, K. L. Croxton // Journal ofBusiness Logistics. – 2005. – № 1 (26). – P. 25–51.109. Lee, B. K. Decomposition heuristic to minimize total cost in a multi-level supplychain network / B. K. Lee, K. H. Kang, Y. H. Lee // Computers & IndustrialEngineering. – 2008. – № 4 (54). – P.
945–959.110. Logistics and financial performance: An analysis of 424 Finnish small andmedium-sized enterprises / J. Töyli [et al.] // International Journal of PhysicalDistribution & Logistics Management. – 2008. – № 1 (38). – P. 57–80.111. Malihi, E. A decision framework for optimisation of business processes alignedwith business goals / E. Malihi, M.
Aghdasi // International Journal of BusinessInformation Systems. – 2014. – № 1 (15). – P. 22–42.112. Management of logistics operations in intermodal terminals by using dynamicmodelling and nonlinear programming / A. Alessandri [et al.] // Maritime Economics &133Logistics. – 2009. – № 1 (11). – P. 58–76.113. McCarthy-Byrne, T. M. Integrating supply chain infrastructure and process tocreate joint value / T. M. McCarthy-Byrne, J. T. Mentzer // International Journal ofPhysical Distribution & Logistics Management.
– 2011. – № 2 (41). – P. 135–161.114. Miranda, P. A. Inventory service-level optimization within distribution networkdesign problem / P. A. Miranda, R. A. Garrido // International Journal of ProductionEconomics. – 2009. – № 1 (122). – P.
276–285.115. Modelling and analysis of service parts logistics systems / F. Tovia [et al.] //International Journal of Operational Research. – 2011. – № 1 (10). – P. 60–81.116. Modelling hospital materials management processes / R.
Iannone [et al.] //International Journal of Engineering Business Management. – 2013. – № 1 (5). – P. 1–12.117. Moncayo-Martínez, L. A. Optimising safety stock placement and lead time in anassembly supply chain using bi-objective MAX-MIN ant system / L. A. MoncayoMartínez, D. Z. Zhang // International Journal of Production Economics. – 2013. – № 1(141). – P.
18–28.118. Multiple-method analysis of logistics costs / J. Engblom [et al.] // InternationalJournal of Production Economics. – 2012. – № 1 (137). – P. 29–35.119. Nidhi, M. B. A cost optimisation strategy for a single warehouse multi-distributorvehicle routing system in stochastic scenario / M. B. Nidhi, B. Anil // InternationalJournal of Logistics Systems and Management. – 2011. – № 1 (10). – P. 110–121.120. Optimization Modeling for Logistics: Options and Implementations / M.
R.Bartolacci [et al.] // Journal of Business Logistics. – 2012. – № 2 (33). – P. 118–127.121. Park, S. A three-level supply chain network design model with risk-pooling andlead times / S. Park, T.-E. Lee, C. S. Sung // Transportation Research Part E: Logisticsand Transportation Review. – 2010. – № 5 (46).
– P. 563–581.122. Placing Safety Stock in Logistic Networks under Guaranteed-Service TimeInventory Models: An Application to the Automotive Industry / L. A. MoncayoMartínez [et al.] // Journal of Applied Research and Technology. – 2014. – № 3 (12). –P. 538–550.134123. Ponce-Cueto, E. Integrating forward and reverse logistics network for commercialgoods management. An integer linear programming model proposal / E. Ponce-Cueto,M.
M. Muelas // International Journal of Production Management & Engineering. –2015. – № 1 (3). – P. 25–32.124. Popova, V. Formal modelling of organisational goals based on performanceindicators / V. Popova, A. Sharpanskykh // Data and Knowledge Engineering. – 2011. –№ 4 (70). – P. 335–364.125. Pudło, P. Logistic costs of quality and their impact on degree of operation level /P.
Pudło, S. Szabo // Journal of Applied Economic Sciences. – 2014. – № 3 (9). – P.469–475.126. Roy, M. A technique for determining the optimum mix of logistics serviceproviders of a make-to-order supply chain by formulating and solving a constrainednonlinear cost optimization problem / M. Roy, R. K. Gupta, T. Dasgupta // DecisionScience Letters. – 2013. – № 2 (2). – P.
95–108.127. Rybakov, D. S. A process model of a logistics system as a basis for optimisationprogramme implementation / D. S. Rybakov // International Journal of LogisticsResearch and Applications. – 2018. – № 1 (21). – P. 72–93.128. Rybakov, D. S. Total cost optimisation model for logistics systems of tradingcompanies / D. S. Rybakov // International Journal of Logistics Systems andManagement.
– 2017. – № 3 (27). – P. 318–342.129. Silva, T. F. G. Logistics cost management: insights on tools and operations / T. F.G. Silva, A. T. P. Gonçalves, M. S. A. Leite // International Journal of LogisticsSystems and Management. – 2014. – № 3 (19).
– P. 329–346.130. Slusarczyk, B. Logistics costs measurement at enterprises / B. Slusarczyk //Economic Annals-XXI. – 2014. – № 11/12. – P. 97–100.131. Solakivi, T. Logistics outsourcing, its motives and the level of logistics costs inmanufacturing and trading companies operating in Finland / T.
Solakivi, J. Töyli, L.Ojala // Production Planning & Control. – 2013. – № 4/5 (24). – P. 388–398.132. Stabell, C. B. Configuring value for competitive advantage: on chains, shops, andnetworks / C. B. Stabell, Ø. D. Fjeldstad // Strategic Management Journal. – 1998. – №1355 (19). – P. 413–437.133.
Supply Chain Council (SCC). CCOR model ver. 1.0 quick reference guide[Электронный ресурс] / Supply Chain Council (SCC). – Washington, D.C., 2008. –Режим доступа: https://ru.scribd.com/document/112812799/CCOR-Quick-Reference.134. Supply Chain Council (SCC). Supply Chain Operations Reference ModelRevision 11.0 / Supply Chain Council (SCC). – [Pittsburgh] : Supply Chain Council,2012. – 976 p.135. Supply Chain Integration and the SCOR Model / H. Zhou [et al.] // Journal ofBusiness Logistics.
– 2011. – № 4 (32). – P. 332–344.136. Supply Chain Management: Processes, Partnerships, Performance / ed. D. M.Lambert. – 4th ed. – [Ponte Vedra Beach, FL] : Supply Chain Management Institute,2014. – 463 p.137. Tancrez, J.-S. A location-inventory model for large three-level supply chains / J.S. Tancrez, J.-C. Lange, P. Semal // Transportation Research Part E: Logistics andTransportation Review. – 2012. – № 2 (48). – P. 485–502.138. The APICS SCC Frameworks [Электронный ресурс] : [сайт]. – Chicago, IL,2016.
– Режим доступа: www.apics.org/sites/apics-supply-chain-council/frameworks/apics-scc-frameworks (дата обращения: 15.03.2016).139. The role of cross-functional teams on the alignment between technologyinnovation effectiveness and operational effectiveness / R. Santa [et al.] // InternationalJournal of Technology Management. – 2011. – № 1/2 (55).
– P. 122–137.140. Vitasek, K. Supply Chain Management Terms and Glossary [Электронныйресурс] / K. Vitasek. – Lombard, IL, 2013. – Режим доступа: https://cscmp.org/sites/default/files/user_uploads/resources/downloads/glossary-2013.pdf?utm_source=cscmpsite&utm_medium=clicklinks&utm_content=glossary&utm_campaign=GlossaryPDF(дата обращения: 08.12.2015).141. Wang, S.
Optimal models for a multi-stage supply chain system controlled bykanban under just-in-time philosophy / S. Wang, B. R. Sarker // European Journal ofOperational Research. – 2006. – № 1 (172). – P. 179–200.142. Zeng, A. Z. Developing a framework for evaluating the logistics costs in global136sourcing processes: An implementation and insights / A. Z. Zeng, C. Rossetti //International Journal of Physical Distribution & Logistics Management.
– 2003. – № 9(33). – P. 785–803.143. Zhao, Q. H. Model and algorithm for inventory/routing decision in a three-echelonlogistics system / Q. H. Zhao, S. Chen, C. X. Zang // European Journal of OperationalResearch. – 2008. – № 3 (191). – P. 623–635.137ПРИЛОЖЕНИЕ АПример решения задачи оптимизации логистического сервиса торговогопредприятияЗадача булева линейного программирования. Разработка табличноймодели, необходимой для решения задачи булева линейного программирования,была выполнена с применением табличного процессора Microsoft Excel, арешение найдено с помощью надстройки «Поиск решения».
Табличная модельоптимизации представлена в таблице А.1.Таблица А.1 – Табличная модель оптимизации ЛСВыручка (базовая), млн руб.500Общие затраты (базовые), млн руб.№ показателя логистического сервиса (i)№ значений показателей (j)1Возможные значения 1-гопоказателя сервиса (S1j)70%Коэффициенты влияния навыручку (Kr1j)1,00Коэффициенты влияния на общиезатраты (Kc1j)1,00Переменные (x1j)0№ показателя логистического сервиса (i)Возможные значения 2-гопоказателя сервиса (S2j)1 сут.Коэффициенты влияния навыручку (Kr2j)1,89Коэффициенты влияния на общиезатраты (Kc2j)2,26Переменные (x2j)0№ показателя логистического сервиса (i)Возможные значения 3-гопоказателя сервиса (S3j)87%Коэффициенты влияния навыручку (Kr3j)1,00Коэффициенты влияния на общиезатраты (Kc3j)1,00Переменные (x3j)130012Прибыль, млнруб.№ знач. № знач.
№ знач.1-го2-го3-гопоказ. показ. показ.35281Норма насыщения спроса34561775%80%85%90%95%99%1,131,271,451,701,901,991,15021,331,541,802,132,4910000Длительность функционального цикла2 сут.3 сут.4 сут.5 сут.6 сут.7 сут.1,761,631,451,271,131,001,751,531,30001Бесперебойность1,1401,0002,000389%91%93%95%97%99%1,071,151,291,441,521,591,0901,2101,3701,5501,7602,000138Продолжение таблицы А.1Выражение∑‘B89 G9B = 1∑‘B89 GOB = 1∑‘B89 GmB = 1≤ 490Ограничения моделиG*B ∈ {0,1}, ∈ {1, .