Диссертация (1143641), страница 46
Текст из файла (страница 46)
– Т. 12. – №.11. – С. 5320-5328.85 Opasanont B. et al. Relating deposition conditions to Zn (S, O, OH) thin film properties forphotovoltaic buffer layers using a continuous flow microreactor //Chemistry of Materials. – 2014.– Т. 26. – №. 23. – С. 6674-6683.86 Лаптев А. Г. Модели пограничного слоя и расчет тепломассообменных процессов //Казань:Изд-во Казанск. ун-та. – 2007.
– С. 500.87 Neto C. et al. Boundary slip in Newtonian liquids: a review of experimental studies //Reports onProgress in Physics. – 2005. – Т. 68. – №. 12. – С. 2859.88 Nguyen N. T., Wereley S. T. Fundamentals and applications of microfluidics. – Norwood : ArtechHouse, 2002.89 Coker A. K. Modeling of chemical kinetics and reactor design. – Houston : Gulf ProfessionalPublishing, 2001.90 Крамерс Х., Вестертерп К. Химические реакторы.
Расчет и управление ими. – М.: Химия,1967.91 Li D. (ed.). Encyclopedia of microfluidics and nanofluidics. – NY. : Springer Science & BusinessMedia, 2008.92 Валландер С.В. Лекции по гидроаэромеханике. Учеб. пособие – Л.: Изд-во Ленингр. ун-та,1978.93 Розанов Л. Н. Вакуумная техника: Учеб. для вузов по спец." Вакуумная техника".-2-е изд.,перераб. и доп //М.: Высш. шк. – 1990.94 Эшбах Г. Л.
Практические сведения по вакуумной технике: Получение и измерение низкихдавлений. – М.: Энергия. – 1966.95 Лапин Ю. В., Стрелец М. Х. Внутренние течения газовых смесей. – М. : Наука, 1989.96 Krzhizhanovskaya V. V. A virtual reactor for simulation of plasma enhanced chemical vapordeposition. – Amsterdam : Universiteit van Amsterdam, 2008.97 Pratt D. T., Wormeck J. J. CREK.
A Computer Program for Calculation of Combustion ReactionEquilibrium and Kinetics in Laminar or Turbulent Flow. Report WSU-ME-TEL-76-1. – 1976.98 Ferziger J. H., Peric M. Computational methods for fluid dynamics. – Berlin : Springer Science &Business Media, 2012.99 Saad Y. Iterative methods for sparse linear systems. – Philadelphia : Society for Industrial andApplied Mathematics, 2003.237100 Ho P., Coltrin M. E., Breiland W. G. Laser-induced fluorescence measurements and kineticanalysis of Si atom formation in a rotating disk chemical vapor deposition reactor //The Journal ofPhysical Chemistry. – 1994.
– Т. 98. – №. 40. – С. 10138-10147.101 Breiland W. G., Evans G. H. Design and verification of nearly ideal flow and heat transfer in arotating disk chemical vapor deposition reactor //Journal of the Electrochemical Society. – 1991. –Т. 138. – №. 6. – С. 1806-1816.102 Einspruch N. G., Wisseman W. R. (ed.). GaAs Microelectronics: VLSI Electronics MicrostructureScience. – Academic Press, 2014. – Т. 11.103 Wu D. et al. MOCVD Growth of High-Quality and Density-Tunable GaAs Nanowires on ITOCatalyzed by Au Nanoparticles Deposited by Centrifugation //Nanoscale research letters.
– 2015.– Т. 10. – №. 1. – С. 410.104 Wu D. et al. Free-standing GaAs nanowires growth on ITO glass by MOCVD //MaterialsResearch Express. – 2015. – Т. 2. – №. 4. – С. 045002.105 Warren E. L. et al. Selective area growth of GaAs on Si patterned using nanoimprint lithography//Photovoltaic Specialists Conference (PVSC), 2016 IEEE 43rd. – IEEE, 2016. – С. 1938-1941.106 Mazumder S., Lowry S. A. The importance of predicting rate-limited growth for accuratemodeling of commercial MOCVD reactors //Journal of Crystal Growth. – 2001.
– Т. 224. – №. 1.– С. 165-174.107 Mountziaris T. J., Jensen K. F. Gas‐Phase and Surface Reaction Mechanisms in MOCVD of GaAswith Trimethyl‐Gallium and Arsine //Journal of The Electrochemical Society. – 1991. – Т. 138. –№. 8. – С. 2426-2439.108 Болдырев Ю. Я., Замотин К. Ю., Петухов Е. П. Моделирование процесса роста нанопленокметодом химического осаждения из газовой фазы //Вестник Южно-Уральскогогосударственного университета. Серия: Вычислительная математика и информатика. –2012. – №. 46 (305).109 Franssila S. Introduction to microfabrication. – NY. : John Wiley & Sons, 2010.110 Буснов В. Полупроводниковые чувствительные элементы для датчиков газов и системсигнализации./В //Буснов, В.
Кожевников «Современная электроника. – 2008. – №. 7. – С.22-27.111 Обвинцева Л. А. Полупроводниковые металлооксидные сенсоры для определенияхимически активных газовых примесей в воздушной среде //Рос. хим. ж.(Ж. Рос. хим. об-ваим. ДИ Менделеева).—2008.—LII. – 2008. – №. 2. – С. 113-121.112 Мультисенсоры на основе пористых наноструктурированных материалов: отчет о НИР;рук. И. А.
Аверин; испол.: В.Б. Абрамов [и др.]. – Пенза., 2011. – 542 с238113 Болотов В. В. и др. Получение слоев нанокомпозита por-Si/SnO x для газовых микро-инаносенсоров //Физика и техника полупроводников. – 2011. – Т. 45. – №. 5. – С. 702-707.114 Fürjes P. et al. Thermal characterisation of micro-hotplates used in sensor structures//Superlattices and Microstructures.
– 2004. – Т. 35. – №. 3. – С. 455-464.115 Pierson H. O. Handbook of chemical vapor deposition: principles, technology and applications. –NY. : William Andrew, 1999.116 Wang P. et al. Polycrystalline ZrB2 coating prepared on graphite by chemical vapor deposition//physica status solidi (b). – 2016. – Т. 253. – №. 8.
– С. 1590-1595.117 Wirth T. (ed.). Microreactors in organic chemistry and catalysis. – NY. : John Wiley & Sons,2013.118 Tretheway D. C., Meinhart C. D. Apparent fluid slip at hydrophobic microchannel walls //Physicsof fluids. – 2002. – Т. 14. – №. 3. – С. L9-L12.119 Zhu Y., Granick S. Limits of the hydrodynamic no-slip boundary condition //Physical reviewletters. – 2002. – Т. 88.
– №. 10. – С. 106102.120 Yan D. G., Yang C., Huang X. Y. Effect of finite reservoir size on electroosmotic flow inmicrochannels //Microfluidics and Nanofluidics. – 2007. – Т. 3. – №. 3. – С. 333-340.121 Xuan X., Li D. Electroosmotic flow in microchannels with arbitrary geometry and arbitrarydistribution of wall charge //Journal of colloid and interface science. – 2005. – Т.
289. – №. 1. – С.291-303.122 Holtze C., Weisse S. A., Vranceanu M. Commercial Value and Challenges of Drop-BasedMicrofluidic Screening Platforms–An Opinion //Micromachines. – 2017. – Т. 8. – №. 6. – С. 193.123 Bithi S. S. et al. Coalescing drops in microfluidic parking networks: A multifunctional platformfor drop-based microfluidics //Biomicrofluidics. – 2014. – Т. 8. – №. 3. – С. 034118.124 Chae J., Kulah H., Najafi K. A monolithic three-axis micro-g micromachined silicon capacitiveaccelerometer //Journal of Microelectromechanical systems. – 2005. – Т.
14. – №. 2. – С. 235242.125 Canavese G. et al. Polymeric mask protection for alternative KOH silicon wet etching //Journal ofMicromechanics and Microengineering. – 2007. – Т. 17. – №. 7. – С. 1387.126 Hoffmann M., Voges E. Bulk silicon micromachining for MEMS in optical communicationsystems //Journal of Micromechanics and Microengineering.
– 2002. – Т. 12. – №. 4. – С. 349.127 Haneveld J. et al. Wet anisotropic etching for fluidic 1D nanochannels //Journal ofMicromechanics and Microengineering. – 2003. – Т. 13. – №. 4. – С. S62.128 Wilke N. et al. Process optimization and characterization of silicon microneedles fabricated bywet etch technology //Microelectronics journal. – 2005. – Т. 36. – №. 7.
– С. 650-656.239129 Andricek L. et al. Processing of ultra thin silicon sensors for future e/sup+/e/sup-/linear colliderexperiments //Nuclear Science Symposium Conference Record, 2003 IEEE. – IEEE, 2003. – Т. 3.– С. 1655-1658.130 Pal P., Sato K. A comprehensive review on convex and concave corners in silicon bulkmicromachining based on anisotropic wet chemical etching //Micro and Nano Systems Letters. –2015. – Т. 3. – №. 1. – С.
6.131 Кривошеева А. Н., Лучинин В. В. Процессы жидкостного химического травления втехнологии микросистем: учеб. пособие //СПб.: Изд-во СПбГЭТУ «ЛЭТИ. – 2012.132 Shikida M. et al. Differences in anisotropic etching properties of KOH and TMAH solutions//Sensors and Actuators A: Physical. – 2000. – Т. 80.
– №. 2. – С. 179-188.133 Biswas K., Kal S. Etch characteristics of KOH, TMAH and dual doped TMAH for bulkmicromachining of silicon //Microelectronics journal. – 2006. – Т. 37. – №. 6. – С. 519-525.134 Nijdam A. J. Anisotropic wet-chemical etching of silicon pits, peaks, principles, pyramids andparticles : дис. – Twente University Press, 2001.135 Michael K. et al. Etching in microsystem technology. – NY . : John Wiley & Sons, 2008.136 Уонг Х. Основные формулы и данные по теплообмену для инженеров. – М.
: Атомиздат1979.137 Jun Kang Y., Lee S. J. Blood viscoelasticity measurement using steady and transient flow controlsof blood in a microfluidic analogue of Wheastone-bridge channel //Biomicrofluidics. – 2013. – Т.7. – №. 5. – С. 054122.138 Tanyeri M. et al. Microfluidic Wheatstone bridge for rapid sample analysis //Lab on a Chip. –2011. – Т. 11. – №. 24. – С. 4181-4186.139 Plecis A., Chen Y.
Microfluidic analogy of the wheatstone bridge for systematic investigations ofelectro-osmotic flows //Analytical chemistry. – 2008. – Т. 80. – №. 10. – С. 3736-3742.140 Bruus H. Theoretical microfluidics. – Oxford : Oxford university press, 2007.141 Hansen M. O. L. Aerodynamics of wind turbines. – NY . : Routledge, 2015.142 Duong M. Q.
et al. Pitch angle control using hybrid controller for all operating regions of SCIGwind turbine system //Renewable Energy. – 2014. – Т. 70. – С. 197-203.143 Конаков С. А., Гринько Д. В. Повышение эффективности ветроэнергетических установок//Известия Оренбургского государственного аграрного университета.
– 2014. – №. 5 (49).144 de Boer M. J. et al. Micromachining of buried micro channels in silicon //Journal ofmicroelectromechanical systems. – 2000. – Т. 9. – №. 1. – С. 94-103.145 Chen P. C., Pan C. W., Kuo Y. L. Performance characterization of passive micromixer with dualopposing strips on microchannel walls //Chemical Engineering and Processing: ProcessIntensification. – 2015. – Т. 93. – С. 27-33.240146 Launay, S. Experimental study on silicon micro-heat pipe arrays / S. Launay, V.
Sartre, M.Lallemand // Applied Thermal Engineering. – 2004. – №24. C. 433-443.147 Kundu P. K. et al. Experimental and Theoretical Evaluation of On-Chip Micro Heat Pipe//Nanoscale and Microscale Thermophysical Engineering. – 2015. – Т. 19. – №. 1. – С. 75-93.148 Liu X., Chen Y. Transient thermal performance analysis of micro heat pipes //Applied ThermalEngineering.