Диссертация (1143641), страница 44
Текст из файла (страница 44)
Необходимым условием для локализацииявляется лимитирование процесса диффузией к поверхности.3) Предложены конструкции микрореакторов и способы их производства. Найденырешения задач локального осаждения функциональных покрытий в технологии производстваизделий электронной и микросистемной техники: полупроводниковых газовых датчиков,микроэлектромеханических гироскопов и акселерометров. Описан метод решения задачиоптимизации технологического процесса ХОГФ, основанный на систематическом проведениибольшого количества опытов по локальному осаждению в микрореакторе.4) Разработана и экспериментально проверена технология жидкостного анизотропноготравления кремния в микрореакторе.
Создана модель, описывающая изменение геометрии игидравлического сопротивления микроканала во время травления. Предложена методикарасчета максимальной температуры проведения процесса. Показано, что с увеличениемплощади травления при фиксированной теплоотдаче, уменьшается критическая температурасистемы, при превышении которой она переходит в режим неконтролируемого саморазогрева.5) Показано, что с применением технологии жидкостного анизотропного травлениякремния в микрореакторе можно создавать статически уравновешенный микрофлюидныймостикУинстона,являющийсячастьюновойсистемывысокоточногоизмерениядифференциального давления. На основе этой технологии предложен новый, более простойтехнологический процесс изготовления теплораспределяющего модуля на основе тепловыхмикротрубок со сложным профилем поперечного сечения.230ИСПОЛЬЗУЕМАЯ ЛИТЕРАТУРА1Ehrfeld W., Hessel V., Löwe H.
Microreactors: New Technology for Modern Chemistry 2000. –NY. : Wiley-VCH, 2005.2Whitesides G. M. The origins and the future of microfluidics //Nature. – 2006. – Т. 442. – №.7101. – С. 368.3Ottino J. M., Wiggins S. Introduction: mixing in microfluidics //Philosophical Transactions of theRoyal Society of London. Series A: Mathematical, Physical and Engineering Sciences. – 2004. –Т. 362. – №. 1818. – С. 923-935.4Килби Д.
С. и др. Возможное становится реальным: изобретение интегральных схем//Успехи физических наук. – 2002. – Т. 172. – №. 9.5Feynman R. P. There's plenty of room at the bottom //Engineering and Science. – 1960. – Т. 23. –№. 5. – С. 22-36.6Petersen K. E. Silicon as a mechanical material //Proceedings of the IEEE. – 1982. – Т. 70.
– №.5. – С. 420-457.7Tabeling P. Introduction to microfluidics. – Oxford : Oxford University Press on Demand, 2005.8Mohamed G. H. The MEMS handbook – Boca Raton. : CRC, 2002.9Bassous, E., et al. "Ink jet nozzle." U.S. Patent No. 4,007,464. 8 Feb. 197710 Lee F. C., Mills R. N., Talke F. E. Drop-on-Demand Ink Jet Printing at High Print Rates and HighResolution.
– IBM Corporation, 1981.11 S.C. Terry A gas chromatography system fabricated on a silicon wafer using integrated circuittechnology, PhD dissertation Stanford University, Stanford, CA. Alto, Stanford ElectronicsLaboratories Tech. Rep.4603-1, 1975,12 Terry S. C., Jerman J. H., Angell J. B. A gas chromatographic air analyzer fabricated on a siliconwafer //Electron Devices, IEEE Transactions on.
– 1979. – Т. 26. – №. 12. – С. 1880-188613 Reyes D. R. et al. Micro total analysis systems. 1. Introduction, theory, and technology//Analytical chemistry. – 2002. – Т. 74. – №. 12. – С. 2623-2636.14 Manz A., Graber N., Widmer H. M. Miniaturized total chemical analysis systems: a novel conceptfor chemical sensing //Sensors and actuators B: Chemical. – 1990. – Т. 1. – №. 1. – С. 244-248.15 Hessel V. Special Issue: Design and Engineering of Microreactor and Smart-Scaled FlowProcesses. – 2014.16 Emmanuel N.
et al. Exploring the Fundamentals of Microreactor Technology withMultidisciplinary Lab Experiments Combining the Synthesis and Characterization of InorganicNanoparticles //Journal of Chemical Education. – 2017. – Т. 94. – №. 6. – С. 775-780.23117 Choi C. H., Paul B. K., Chang C. H. Microreactor-Assisted Solution Deposition for CompoundSemiconductor Thin Films //Processes. – 2014. – Т.
2. – №. 2. – С. 441-465.18 Atobe M. Organic electrosynthesis in flow microreactor //Current Opinion in Electrochemistry. –2017. – Т. 2. – №. 1. – С. 1-6.19 Ott D., Borukhova S., Hessel V. Life cycle assessment of multi-step rufinamide synthesis–fromisolated reactions in batch to continuous microreactor networks //Green Chemistry.
– 2016. – Т.18. – №. 4. – С. 1096-1116.20 Fanelli F. et al. Contribution of microreactor technology and flow chemistry to the development ofgreen and sustainable synthesis //Beilstein journal of organic chemistry. – 2017. – Т. 13. – С. 520.21 Zhou W. et al. Development of cylindrical laminated methanol steam reforming microreactor withcascading metal foams as catalyst support //Fuel.
– 2017. – Т. 191. – С. 46-53.22 Jeong H. et al. Stabilization of Hydrogen Production via Methanol Steam Reforming inMicroreactor by Al2O3 Nano-Film Enhanced Catalyst Adhesion //Journal of nanoscience andnanotechnology. – 2016. – Т. 16. – №. 5. – С. 4393-4398.23 Yan C. F. et al. Numerical simulation and experimental study of hydrogen production fromdimethyl ether steam reforming in a micro-reactor //International Journal of Hydrogen Energy.
–2014. – Т. 39. – №. 32. – С. 18642-18649.24 Ebrahimi H., Rahmani M. Hydrogen production in membrane microreactor using chemicallooping combustion: A dynamic simulation study //International Journal of Hydrogen Energy. –2017. – Т. 42. – №. 1. – С. 265-278.25 Qian M. et al. Fluid flow and heat transfer performance in a micro-reactor with non-uniformmicro-pin-fin arrays for hydrogen production at low Reynolds number //International Journal ofHydrogen Energy. – 2017. – Т. 42. – №. 1. – С. 553-561.26 Granlund M.
Z. et al. Comparison between a micro reactor with multiple air inlets and a monolithreactor for oxidative steam reforming of diesel //International journal of hydrogen energy. – 2014.– Т. 39. – №. 31. – С. 18037-18045.27 López-Guajardo E. et al. Process Intensification of Biodiesel Production Using a Tubular MicroReactor (TMR): Experimental and Numerical Assessment //Chemical EngineeringCommunications. – 2017. – Т. 204. – №.
4. – С. 467-475.28 Mahadevan R. et al. Effect of alkali and alkaline earth metals on in-situ catalytic fast pyrolysis oflignocellulosic biomass: a microreactor study //Energy & Fuels. – 2016. – Т. 30. – №. 4. – С.3045-3056.29 Ebrahimi H., Rahmani M. A novel intensified microreactor for syngas production by couplingreduction-oxidation reactions in chemical looping reforming process //Journal of CleanerProduction. – 2017.
– Т. 167. – С. 376-394.23230 Buckingham G. T. et al. The thermal decomposition of the benzyl radical in a heated microreactor. I. Experimental findings //The Journal of chemical physics. – 2015. – Т. 142. – №. 4. – С.044307.31 Buckingham G. T. et al. The thermal decomposition of the benzyl radical in a heated microreactor. II. Pyrolysis of the tropyl radical //The Journal of chemical physics. – 2016. – Т. 145. –№. 1. – С. 014305.32 Vandenbergh J.
et al. Polymer end group modifications and polymer conjugations via ―click‖chemistry employing microreactor technology //Journal of Polymer Science Part A: PolymerChemistry. – 2014. – Т. 52. – №. 9. – С. 1263-1274.33 Illner S. et al. A Falling‐Film Microreactor for Enzymatic Oxidation of Glucose //ChemCatChem.– 2014. – Т. 6. – №. 6. – С. 1748-1754.34 Basavaraju K. C. et al. Chitosan‐Microreactor: A Versatile Approach for Heterogeneous OrganicSynthesis in Microfluidics //ChemSusChem. – 2014.
– Т. 7. – №. 7. – С. 1864-1869.35 Degennaro L. et al. Flow microreactor synthesis of 2, 2-disubstituted oxetanes via 2phenyloxetan-2-yl lithium //Open Chemistry. – 2016. – Т. 14. – №. 1. – С. 377-382.36 Carvalho F., Fernandes P. Packed bed enzyme microreactor: Application in sucrose hydrolysis asproof-of-concept //Biochemical Engineering Journal. – 2015. – Т. 104. – С. 74-81.37 Nakano M. et al.
Remarkable Improvement of Organic Photoreaction Efficiency in the FlowMicroreactor by the Slug Flow Condition Using Water //Organic Process Research &Development. – 2016. – Т. 20. – №. 9. – С. 1626-1632.38 Cheng X. et al. An optofluidic planar microreactor for photocatalytic reduction of CO 2 in alkalineenvironment //Energy. – 2017. – Т.
120. – С. 276-282.39 Inoue T. et al. Direct synthesis of hydrogen peroxide using glass fabricated microreactor–Multichannel operation and catalyst comparison //Catalysis Today. – 2015. – Т. 248. – С. 169176.40 Inoue T. et al. Direct synthesis of hydrogen peroxide based on microreactor technology //Fuelprocessing technology. – 2013. – Т. 108. – С. 8-11.41 Wang J. et al. Preparation of In (OH) 3 nanorods and nanocubes and the effect on In2O3 particlesize in the microreactor //Industrial & Engineering Chemistry Research.