Диссертация (1143641), страница 45
Текст из файла (страница 45)
– 2017. – Т. 56. – №. 23.– С. 6637-6644.42Polyzoidis A. et al. Continuous microreactor synthesis of ZIF-8 with high space–time-yield andtunable particle size //Chemical Engineering Journal. – 2016. – Т. 283. – С. 971-977.43 Dobhal A. et al. A microreactor-based continuous process for controlled synthesis of poly-methylmethacrylate-methacrylic acid (PMMA) nanoparticles //Journal of Materials Chemistry B. – 2017.– Т. 5. – №. 18.
– С. 3404-3417.23344 Luty-Błocho M. et al. The synthesis of stable platinum nanoparticles in the microreactor//Archives of Metallurgy and Materials. – 2014. – Т. 59. – №. 2. – С. 509-512.45 Stauss S. et al. Diamondoid synthesis in atmospheric pressure adamantane–argon–methane–hydrogen mixtures using a continuous flow plasma microreactor //Plasma Sources Science andTechnology. – 2014. – Т. 23.
– №. 3. – С. 035016.46 Zhang M. et al. The development and numerical simulation of a plasma microreactor dedicated tochemical synthesis //Green Processing and Synthesis. – 2017. – Т. 6. – №. 1. – С. 63-72.47 Guan X. et al. A dual-core double emulsion platform for osmolarity-controlled microreactortriggered by coalescence of encapsulated droplets //Biomicrofluidics. – 2016.
– Т. 10. – №. 3. – С.034111.48 Yang L. et al. Characterization and modeling of multiphase flow in structured microreactors: apost microreactor case study //Lab on a Chip. – 2015. – Т. 15. – №. 15. – С. 3232-3241.49 Muto A. et al. Liquid–Liquid Extraction of Lithium Ions Using a Slug Flow Microreactor: Effectof Extraction Reagent and Microtube Material //Solvent Extraction and Ion Exchange.
– 2017. –Т. 35. – №. 1. – С. 61-73.50 Jönsson A. et al. Thiol-ene monolithic pepsin microreactor with a 3D-printed interface forefficient UPLC-MS peptide mapping analyses //Analytical Chemistry. – 2017. – Т. 89. – №. 8. –С. 4573-4580.51 Wiktor P. et al. Microreactor array device //Scientific reports. – 2015. – Т. 5. – С. 8736.52 Glotz G. et al.
Reaction Calorimetry in Microreactor Environments – Measuring Heat of Reactionby Isothermal Heat Flux Calorimetry //Organic Process Research & Development. – 2017. – Т.21. – №. 5. – С. 763-770.53 Zhang J. S. et al. Measuring enthalpy of fast exothermal reaction with infrared thermography in amicroreactor //Chemical Engineering Journal. – 2016.
– Т. 295. – С. 384-390.54 Scheithauer A. et al. Online 1H NMR Spectroscopic Study of the Reaction Kinetics in Mixtures ofAcetaldehyde and Water Using a New Microreactor Probe Head //Industrial & EngineeringChemistry Research. – 2014. – Т. 53. – №. 45. – С. 17589-17596.55 Brächer A.
et al. Application of a new micro-reactor 1 H NMR probe head for quantitativeanalysis of fast esterification reactions //Chemical Engineering Journal. – 2016. – Т. 306. – С.413-421.56 Dong C. et al. Reaction kinetics of cyclohexanone ammoximation over TS-1 catalyst in amicroreactor //Chemical Engineering Science. – 2015. – Т. 126. – С.
633-640.57 Zhao S. et al. Operando Characterization of Catalysts through use of a Portable Microreactor//ChemCatChem. – 2015. – Т. 7. – №. 22. – С. 3683-3691.23458 Baraban J. H. et al. An optically accessible pyrolysis microreactor //Review of ScientificInstruments. – 2016. – Т. 87. – №. 1.
– С. 014101.59 Baier S. et al. Lithographically fabricated silicon microreactor for in situ characterization ofheterogeneous catalysts—Enabling correlative characterization techniques //Review of ScientificInstruments. – 2015. – Т. 86. – №. 6. – С. 065101.60 Doronkin D. E. et al. Lithographically fabricated silicon microreactor for operando QEXAFSstudies in exhaust gas catalysis during simulation of a standard driving cycle //Journal of Physics:Conference Series. – IOP Publishing, 2016. – Т. 712.
– №. 1. – С. 12030-12033.61 Gross E. et al. In situ IR and X-ray high spatial-resolution microspectroscopy measurements ofmultistep organic transformation in flow microreactor catalyzed by Au nanoclusters //Journal ofthe American Chemical Society. – 2014. – Т. 136. – №. 9. – С. 3624-3629.62 Christensen D.
et al. Room temperature local synthesis of carbon nanotubes //Nanotechnology,2003. IEEE-NANO 2003. 2003 Third IEEE Conference On. – IEEE, 2003. – Т. 2. – С. 581-584.63 Englander O., Christensen D., Lin L. Local synthesis of silicon nanowires and carbon nanotubeson microbridges //Applied Physics Letters. – 2003. – Т. 82. – №.
26. – С. 4797-4799.64 Lin W. C. et al. Selective local synthesis of nanowires on a microreactor chip //Solid-StateSensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS'05.The 13th International Conference on.
– IEEE, 2005. – Т. 2. – С. 1396-1399.65 Kogelschatz U. Applications of microplasmas and microreactor technology //Contributions toPlasma Physics. – 2007. – Т. 47. – №. 1‐2. – С. 80-88.66 Sankaran R. M., Giapis K. P. Hollow cathode sustained plasma microjets: Characterization andapplication to diamond deposition //Journal of Applied Physics. – 2002. – Т. 92. – №. 5. – С.2406-2411.67 Sankaran R. M., Giapis K.
P. Maskless etching of silicon using patterned microdischarges//Applied Physics Letters. – 2001. – Т. 79. – №. 5. – С. 593-595.68 Sankaran R. M., Giapis K. P. High-pressure micro-discharges in etching and depositionapplications //Journal of Physics D: Applied Physics. – 2003. – Т. 36. – №.
23. – С. 2914.69 Fang J., Levchenko I., Ostrikov K. K. Atmospheric plasma jet-enhanced anodization andnanoparticle synthesis //IEEE Transactions on Plasma Science. – 2015. – Т. 43. – №. 3. – С. 765769.70 Takahashi T., Tanaka S., Esashi M. Development of an in situ chemical vapor deposition methodfor an alumina catalyst bed in a suspended membrane micro fuel reformer //Journal ofMicromechanics and Microengineering. – 2006.
– Т. 16. – №. 9. – С. S206.23571 Luty-Błocho M. et al. The synthesis of platinum nanoparticles and their deposition on the activecarbon fibers in one microreactor cycle //Chemical engineering journal. – 2013. – Т. 226. – С. 4651.72 Hu C., Hartman R. L. High‐throughput packed‐bed microreactors with in‐line analytics for thediscovery of asphaltene deposition mechanisms //AIChE Journal. – 2014. – Т. 60.
– №. 10. – С.3534-3546.73 Shubo F., Liming S., Qiangkun L. A study on coke deposition and coking inhibitors during AGOpyrolysis in pulsed micro-reactor system //Journal of analytical and applied Pyrolysis. – 2002. – Т.65. – №. 2. – С. 301-312.74 Liu S., Chang C. H. High Rate Convergent Synthesis and Deposition of Polyamide Dendrimersusing a Continuous‐Flow Microreactor //Chemical engineering & technology. – 2007. – Т. 30. –№. 3.
– С. 334-340.75 Jung J. Y. et al. The growth of the flower-like ZnO structure using a continuous flow microreactor//Current Applied Physics. – 2008. – Т. 8. – №. 6. – С. 720-724.76 Chang Y. J. et al. Investigate the reacting flux of chemical bath deposition by a continuous flowmicroreactor //Electrochemical and Solid-State Letters. – 2009. – Т.
12. – №. 7. – С. H244-H247.77 Su Y. W. et al. Dense CdS thin films on fluorine-doped tin oxide coated glass by high-ratemicroreactor-assisted solution deposition //Thin Solid Films. – 2013. – Т. 532. – С. 16-21.78 Mugdur P. H. et al. A comparison of chemical bath deposition of CdS from a batch reactor and acontinuous-flow microreactor //Journal of the Electrochemical Society. – 2007. – Т. 154. – №. 9.
–С. D482-D488.79 Chang Y. J. et al. Nanocrystalline CdS MISFETs fabricated by a novel continuous flowmicroreactor //Electrochemical and Solid-State Letters. – 2006. – Т. 9. – №. 5. – С. G174-G177.80 McPeak K. M., Baxter J. B. Microreactor for high-yield chemical bath deposition ofsemiconductor nanowires: ZnO nanowire case study //Industrial & Engineering ChemistryResearch. – 2009.
– Т. 48. – №. 13. – С. 5954-5961.81 McPeak K. M., Baxter J. B. ZnO nanowires grown by chemical bath deposition in a continuousflow microreactor //Crystal Growth & Design. – 2009. – Т. 9. – №. 10. – С. 4538-4545.82 McPeak K. M. et al. Microreactor Chemical Bath Deposition of Laterally Graded Cd1–x Zn x SThin Films: A Route to High-Throughput Optimization for Photovoltaic Buffer Layers//Chemistry of Materials. – 2013.
– Т. 25. – №. 3. – С. 297-306.83 Ramprasad S. et al. Cadmium sulfide thin film deposition: A parametric study using microreactorassisted chemical solution deposition //Solar Energy Materials and Solar Cells. – 2012. – Т. 96. –С. 77-85.23684 Paul B. K. et al. A uniform residence time flow cell for the microreactor-assisted solutiondeposition of CdS on an FTO-glass substrate //Crystal Growth & Design. – 2012.