Ю.И. Афанасьев, Н.А. Юрина - Гистология, цитология и эмбриология (1135295), страница 81
Текст из файла (страница 81)
Наружные сегменты колбочковых клеток обычно конические, а внутренний сегмент по диаметру значительно превосходит наружный. Наружный сегмент представляет собой стопку плоских мембранных мешочков — дисков, число которых доходит до 1000.
В процессе эмбрионального развития диски палочек и колбочек образуются как складки-впячивания плазматической мембраны реснички, растущей из апикального конца фоторецептора. В палочках новообразование складок продолжается у основания наружного сегмента в течение всей жизни. Вновь появившиеся складки оттесняют старые в дистальном направлении. При этом диски отрываются от поверхности мембран и превращаются в замкнутые структуры, полностью отделенные от оболочки наружного сегмента. Отработанные дистальные диски фагоцитируются клетками пигментного эпителия.
Дистальные диски колбочек так же, как у палочек, фагоцитируются пигментными клетками. Механизм синтеза новых дисков в колбочках неясен. Таким образом, фоторецепторный диск в наружном сегменте палочковых нейронов полностью отделен от плазматической мембраны. Он образован двумя фоторецепторными мембранами, соединенными по краям и внутри диска, на всем его протяжении имеется узкая щель. У края диска щель расширяется, образуется петля, внутренний диаметр которой составляет несколько десятков нанометров. Параметры диска: толщина — 15 нм, ширина внутридискового пространства — 1 нм, расстояние между дисками — междискового цитоплазматического пространства — 15 нм.
У колбочек в наружном сегменте диски не замкнуты и внутридисковое пространство сообщается с внеклеточной средой (см. рис.168,Б). У них более крупное, округлое и светлое ядро, чем у палочек. Во внутреннем сегменте колбочек имеется участок, называемый зллипсоидом, состоящий из липидной капли и скопления плотно прилегающих друг к другу митохондрий. Внутренний конец аксона каждой колбочки имеет пуговчатое расширение, которое иногда называкп синоптическим тельцем или ножкой колбочки.
Найдены также прямые контакты ножек смежных колбочек друг с другом, что создает основу для межрецепторной передачи. Другие ножки разделяются отростками мюллеровых клеток. От ядросодержащей части отходят центральные отростки — аксоны, которые образуют синаптические соединения с дендритами палочковых биполяров, горизонтальных клеток, а также с карликовыми и плоскими биполярами. Электронная микроскопия клеток, окрашенных по Гольджи, показала, что имеются два способа образования синаптических окончаний с колбочками: инвагинирующие синапсы для контактов дендритов с синап- тической лентой (пластинкой) в области инвагинации и плоский базалъный синоптический контакт на поверхности ножки вдали от синаптической пластинки. Длина колбочек в центре желтого пятна около 75 мкм, толщина — 1 — 1,5 мкм.
Структура фоторецепторной мембраны диска строго упорядочена и обеспечивает физиологические процессы возбуждения (фототрансдукции) и адаптации зрительной клетки. Фотореаепторнал мембрана диска наружного сегмента палочковых нейронов составляет около 7 нм (двойной слой фосфолипидных молекул— 4 нм, гидрофильные интегральные фрагменты белковых молекул — 3 нм), полипептидные цепи фрагментов белковых молекул пронизывают мембрану насквозь, изгибаясь несколько раз, а на поверхности их располагаются более гидрофильные примембранные белки и олигосахариды. Основным белком фоторецепторной мембраны (до 95 — 98 % интегральных белков) является зрительный пигмент родопсин, который обеспечивает поглощение света в некоторой характерной области длин волн и тем самым определяет спектральный диапазон той или иной фоторецепторной клетки, запускает фоторецепторный процесс.
Зрительный пигмент представляет собой хромогликопротеид. Эта сложная молекула содержит одну хромофориую группу, две олигосахаридные цепочки и водо- нерастворимый мембранный белок евсин. Хромофорной груялой зрительных пигментов служит ретиналь-1 (альдегид витамина А) или ретиналь-2 (альдегид витамина А,). Все зрительные пигменты, содержащие ретиналь-1, относятся к родопсинам, а содержащие ретиналь-2 — к порфиропсинам. Светочувствительная молекула зрительного пигмента при поглощении одного кванта света претерпевает ряд последовательных превращений, в результате которых обесцвечивается.
Ретиналь на последних стадиях фотолиза отщепляется от белка — опсина и переносится в пигментный эпителий. Поглощение одного фотона вызывает изомеризацию хромофора фотопигментов и превращение его из 11-цис-формы в полную трансконфигурацию. В результате изомеризации образуется конформационно активное промежуточное соединение фотопигмента, который запускает каскад электрических реакций.
На первой ступени каскада происходит активация трансдуцина (О-белка), который в свою очередь активирует цГМФ-фосфодиэстеразу. В результате снижения уровня цГМФ в цито- плазме наружного сегмента фоторецепторов происходит закрытие цГМФ-зависимых ионных мембранных каналов и фоторецепторная клетка гиперполяризуется. Колбочки содержат три типа зрительных пигментов (колбочковый опсин), различия которых определяются структурой опсиновой молекулы, с максимальной чувствительностью в длинноволновой (558), средневолновой (531) и коротковолновой (420) части спектра.
Один из пигментов — иодопсии — чувствителен к длинноволновой части спектра. Известно, что молекула опсина длинно- и средневолновых чувствительных колбочковых пигментов (идентичность по аминокислотному набору 96 %) состоит из Зб4 аминокислот. Морфологические исследования последнего времени показали значительное отличие коротковолновых специфических колбочек (Б-колбочки, голубые) от средне- и длинноволновых. Известно, что Б-колбочки имеют более длинный внутренний сегмент, что позволяет им проникать дальше в субретинальное пространство; их внутренний сегмент утолщен в центральной области и более тонок в периферической части сетчатки; они имеют меньшую по величине и морфологически различимую ножку по сравнению с длинноволновыми колбочками.
34В При пониженной плотности в фовеальной области (3 % от других колбочек) Б-колбочки имеют еще и другое распределение в сетчатке и не складываются в регулярную гексагональную мозаику, типичную для других колбочек. Пигмент, чувствительный к коротковолновой части спектра, более сходен с родопсином. У человека гены, кодирующие пигмент коротковолновой части спектра и родопсина, находятся на длинном плече 3-й и 7-й хромосом и имеют сходство по структуре. Различные видимые нами цвета зависят от соотношения трех видов стимулируемых колбочек.
Отсутствие длинно- и средневолновых колбочковых пигментов обусловлено соответствующими изменениями гена на Х-хромосоме, которые определяют два типа дихромазии: протанопию и дейтеранопию. Протанопия — нарушение цветоошушения на красный цвет (ранее ошибочно называлось дальтонизмом). У Джона Дальтона благодаря последним достижениям молекулярной генетики выявлена дейтеранопия (нарушение цветоошушения на зеленый цвет) с простым длинноволновым геном опсина в ДНК. Горизонтальные нервные клетки (пешопцгп Ьопзопга11з) располагаются в один или два ряда. Они отдают множество дендритов, которые контактируют с аксонами фоторецепторных клеток.
Аксоны горизонтальных нейронов, имеющие горизонтальную ориентацию, могут тянуться на довольно значительном расстоянии и вступать в контакт с аксонами как палочковых, так и колбочковых нейронов. Передача возбуждения с горизонтальных клеток на синапсы фоторецепторного и биполярного нейронов вызывает временную блокаду в передаче импульсов от фоторецепторов (эффект латерального торможения), что увеличивает контраст в зрительном восприятии. По последним данным, горизонтальные клетки образуют малые круги, влияющие на передачу информации внутри сетчатки, благодаря синаптическим связям, расположенным латерально от синаптических полосок фоторецепторов, вместе с центрально расположенными синапсами биполярных клеток.
Считают, что существует обратная связь между горизонтальной клеткой и фоторецептором. Круг дает информацию биполярной клетке об окружении. Биполярные нервные клетки (пецгопшп )лро1аг(з) соединяют палочковые и колбочковые нейроны с ганглиозными клетками сетчатки. В центральной части сетчатки несколько палочковых нейронов соединяются с одной биполярной, а колбочковые нейроны контактируют в соотношении 1:1 или 1:2. Такое сочетание обеспечивает более высокую остроту цветового видения по сравнению с черно-белым. Биполярные клетки имеют радиальную ориентацию. Различают несколько разновидностей биполярных клеток по строению, содержанию синаптических пузырьков и связям с фоторецепторами.
Биполярные нейроны, контактирующие с палочковыми нейронами, условно называют палочковыми биполярами, а контактирующие с колбочковыми нейронами — колбочковыми биполярами. Биполярные клетки играют существенную роль в концентрации импульсов, получаемых от фото- сенсорных нейронов и затем передаваемых ганглиозным клеткам. Взаимоотношения биполярных клеток с палочковыми и колбочковыми нейронами неидентичны. Несколько палочковых клеток (15 — 20) конвергируют на одной биполярной клетке в наружном сетчатом слое, а аксон биполяров во внутреннем сетчатом слое дивергирует на несколько типов амакриновых клеток, которые конвергируют на ганглионарной клетке.
Значение дивергенции и конвергенции заключается в ослаблении или усилении па- 349 лочкового сигнала, что обусловливает чувствительность зрительной системы к единичному кванту света. Колбочковые пути конвергируют в меньшей степени, чем палочковые. Колбочковые пути у человека и обезьян состоят из двух параллельных информационных каналов: прямого (от фоторецептора на ганглионарную клетку) и непрямого (через биполярную клетку). В результате такой организации один канал проводит на ганглионарную клетку информацию о стимуле ярче фона, а другой о стимуле темнее фона. Это основа контраста в зрительном восприятии. Во внутреннем сетчатом слое, где информация с колбочковых биполяров переходит на ганглионарные клетки, находятся только синапсы возбуждающих каналов.
Амахрияные клетки относятся к интернейронам, которые осуществляют связь на втором синаптическом уровне вертикального пути: фоторецептор — биполяр — ганглионарная клетка. Их синаптическая активность во внутреннем сетчатом слое проявляется в интеграции, модуляции, включении сигналов, идущих к ганглионарным клеткам.
Эти клетки, как правило, не имеют аксонов, однако некоторые амакриновые клетки содержат длинные аксоноподобные отростки. Иммуноцитохимические исследования, внутриклеточная регистрация электрической активности позволили выделить 40 различных морфологических подтипов амакриновых клеток. По диаметру поля их дендритов различают клетки с узкими, маленькими, средними и широкими полями. Амакриновые клетки А„осуществляют обратную синаптическую связь с палочковыми биполярамй, так же как и горизонтальные клетки с фоторецепторами. Синапсы амакриновых клеток бывают химическими и электрическими. Например, дистальные дендриты амакриновой клетки А, образуют синапсы с аксонами палочковых биполяров, а проксимальные дендриты — с ганглионарными клетками.
Более крупные дендриты А, формируют электрические синапсы с аксонами колбочковых биполяров. В палочковых путях играют большую роль допаминергические и ГАМКергические амакриновые клетки. Они ремоделируют палочковые сигналы и осуществляют с ними обратную связь. Гаиглионарные клетки — наиболее крупные клетки сетчатки, имеющие большой диаметр аксонов, способных проводить электрические сигналы.
В их цитоплазме хорошо выражено базофильное вещество. Они собирают информацию от всех слоев сетчатки как по вертикальным путям (фоторецепторы -+ биполяры -+ ганглионарные клетки), так и по латеральным путям (фоторецепторы -+ горизонтальные клетки -+ биполяры -+ амакриновые клетки -+ ганглионарные клетки) и передают ее в мозг. Тела ганглионарных клеток образуют слой, который носит название ганглионарного (з(гагцщ Вап81(опаге), а их аксоны (более миллиона волокон) формируют внутренний слой нервных волокон (з(гапзщ пецгоГ1Ьгагцщ), переходящий в зрительный нерв, где они уже окружены миелиновой оболочкой.