Н.И. Ионкин - Электронные лекции (2008) (1135232), страница 8
Текст из файла (страница 8)
Ñõîäèìîñòü áóäåò ãäå-òî ìåæäó ëèíåéíîé è êâàäðàòè÷íîé. Òàêèìîáðàçîì, ñõîäèìîñòü áóäåò çàâèñåòü îò x0 .òåîðåòè÷åñêè áóäåò ëèíåéíàÿ ñõîäèìîñòü, íî ÷åì áëèæåÃëàâà 4Ðàçíîñòíûå ìåòîäû ðåøåíèÿçàäà÷ ìàòåìàòè÷åñêîéôèçèêè4.1Ðàçíîñòíûå ñõåìû äëÿ óðàâíåíèÿ òåïëîïðîâîäíîñòè4.1.1ÂâåäåíèåÁóäåì ðàññìàòðèâàòü ïåðâóþ êðàåâóþ çàäà÷ó äëÿ óðàâíåíèÿ òåïëîïðîâîäíîñòè:∂2u∂u=+ f (x, t), 0 < x < 1, 0 < t ≤ T ;∂t∂x2(4.1)u(0, t) = µ1 (t), u(1, t) = µ2 (t), 0 ≤ t ≤ T ;(4.2)u(x, 0) = u0 (x), 0 ≤ x ≤ 1.(4.3)Ïðè ðåøåíèè çàäà÷ ðàçíîñòíûìè ìåòîäàìè, ìû äîëæíû ââåñòè ñåòêó â îáëàñòè èçìåíåíèÿ àðãóìåíòîâ. Áóäåì ðàññìàòðèâàòü ñåòêó ñ ïîñòîÿííûì ÷èñëîìh,ïî ïåðåìåííîéxè ÷èñëîìτïî ïåðåìåííîét:• ωh = {xi : xi = ih, i = 1, N − 1, hN = 1}• ωτ = {tj : tj = jτ, j = 1, j0 , j0 τ = T }• ωτ h = ωτ × ωh , ωτ h = ωτ × ωh• ωh = {xi : xi = ih, i = 1, N , hN = 1}• ωτ = {tj : tj = jτ, j = 0, j0 , j0 τ = T }Óçëû ñåòêè äåëÿòñÿ íà âíóòðåííèå è ãðàíè÷íûå óçëû.59Ãëàâà 4. Ðàçíîñòíûå ìåòîäû ðåøåíèÿ çàäà÷ ìàòåìàòè÷åñêîé ôèçèêè604.1.2ßâíàÿ ðàçíîñòíàÿ ñõåìàÂâåäåì îáîçíà÷åíèåyin = y(xi , tn ).Àïïðîêñèìèðóåì ïðîèçâîäíûå çàäà÷èòåïëîïðîâîäíîñòè ðàçíîñòíûìè ïðîèçâîäíûìè.
Ïîëó÷èì ñëåäóþùóþ çàäà÷ó:ny n − 2yin + yi−1yin+1 − yin+ f (xi , tn ), (xi , tn ) ∈ ωτ h ;= i+12τhn+1y0n+1 = µ1 (tn+1 ), yN= µ2 (tn+1 ), tn+1 ∈ ωτ ;yi0= u0 (xi ), xi ∈ ωh .(4.4)(4.5)(4.6)Âîïðîñû, êîòîðûå âîçíèêàþò ïðè èçó÷åíèè ðàçíîñòíûõ ñõåì1. Ïîãðåøíîñòü àïïðîêñèìàöèè ðàçíîñòíîé ñõåìû (íà ðåøåíèè èñêîìîéçàäà÷è)2. Ñóùåñòâîâàíèå è åäèíñòâåííîñòü ðåøåíèÿ çàäà÷è (4.4)(4.6)3. Àëãîðèòì íàõîæäåíèÿ ÷èñëåííîãî ðåøåíèÿ4. Èññëåäîâàíèå óñòîé÷èâîñòè ðàçíîñòíîé ñõåìû5. Èçó÷åíèå ñõîäèìîñòè ðåøåíèÿ ðàçíîñòíîé çàäà÷è ê ðåøåíèþ äèôôåðåíöèàëüíîé çàäà÷èÐåøåíèå ýòî çàäà÷è áóäåì íàõîäèòü ïî âðåìåííûì ñëîÿì, ò.å.
ïåðåõîäîì îòtnêtn+1 .Èç (4.4) âûðàçèìyin+1 = yin +yin+1 :τ nn(y− 2yin + yi−1) + τ fin , i = 1, N .h2 i+1(4.7)Òàêèì îáðàçîì, ïî ÿâíûì ôîðìóëàì (4.7) ìû ìîæåì íàéòè ðåøåíèå. Ýòîðåøàåò òðåòèé âîïðîñ. Îáîçíà÷èì ïîãðåøíîñòü:Çàìå÷àíèå.zin = yin − u(xi , tn ). äàííîì ñëó÷àå íàì íóæíî ñðàâíèâàòü ôóíêöèè èç ðàçíûõïðîñòðàíñòâ äèñêðåòíóþ è íåïðåðûâíóþ. Äëÿ èõ ñðàâíåíèÿ èñïîëüçóþòñÿ äâà ïîäõîäà:1. Ñïðîåöèðîâàòü ôóíêöèþuâ óçëû ñåòêè.2.
Ïðîèíòåðïîëèðîâàòü äèñêðåòíóþ ôóíêöèþy.Ìû áóäåì èñïîëüçîâàòü ïåðâûé ïîäõîä.Íåäîñòàòêè ÿâíîé ñõåìû: îíà óñëîâíî ñõîäÿùàÿñÿ, òî åñòü: îíà ñõîäèòñÿ⇔ γ ≤ 0.5, γ = hτ2 . Ýòî âåäåò ê áîëüøîìó ÷èñëó øàãîâ ïðè âû÷èñëåíèè.−2Ïóñòü h = 10⇒ τ ≤ 0.5 × 10−4 . Åñëè íàì íóæíî äîñ÷èòàòü äî t = 1,òî íåîáõîäèìî ïðîñ÷èòàòü 20000 ñëîåâ, ÷òîáû çàäà÷à íå ïîòåðÿëà óñòîé÷ènâîñòü. Èç ïîãðåøíîñòè âûðàçèì yi è ïîäñòàâèì â (4.7):yin = zin + uni ,nz n+1 − 2zin + zi−1zin+1 − zin= i+ ψin , (xi , tn ) ∈ ωτ h ,τh2⇓ψin = fin −un+1 − 2uni + uni−1un+1− unii+ i.τh24.1. Ðàçíîñòíûå ñõåìû äëÿ óðàâíåíèÿ òåïëîïðîâîäíîñòèÎïðåäåëåíèå 18.Îñòàòî÷íàÿ ôóíêöèÿ61ψin ïîãðåøíîñòü àïïðîêñèìàöèèðàçíîñòíîé ñõåìû (4.4)(4.6) íà ðåøåíèè èñõîäíîé çàäà÷è.Ðàçëîæèìöèèun+1iâ îêðåñòíîñòèuni , ïðåäïîëàãàÿ íóæíóþ ãëàäêîñòü ôóíê-u(x, t):un+1− uni∂ui=(xi , tn ) + O(τ ),τ∂tuni − 2uni − uni−1∂2u=(xi , tn ) + O(h2 ).h2∂x2Òåïåðü âèäíî, ÷òî ïîãðåøíîñòü àïïðîêñèìàöèè çàäà÷è (4.4)øåíèè èìååò ïåðâûé ïîðÿäîê ïîτè âòîðîé ïîðÿäîê ïî− (4.6)íà ðå-h:n+1z0n+1 = 0, zN= 0, tn+1 ∈ ω τ ,zi0 = 0, xi ∈ ω h .Èòàê, äëÿ ïîãðåøíîñòèz(íå ïóòàòü ñ ïîãðåøíîñòüþ àïïðîêñèìàöèè) ìûïîëó÷èëè òó æå ñàìóþ çàäà÷ó, íî ñ îäíîðîäíûìè íà÷àëüíî-êðàåâûìè óñëîâèÿìè.
Ââåäåì ðàâíîìåðíóþ íîðìó:||z n ||C = max |zin |.0≤i≤NÓòâåðæäåíèå 9. Åñëè γ ≤ 0.5, òî ðàçíîñòíàÿ ñõåìà (4.4) − (4.6) ñõîäèòñÿâ ðàâíîìåðíîé íîðìå.Äîêàçàòåëüñòâî.nnzin+1 = zin + γ(zi+1− 2zin + zi−1) + τ ψin ,⇓nnzin+1 = γzi+1+ (1 − 2γ)zin + γzi−1+ τ ψin ,⇓|zin+1 |=nγ|zi+1|Çàìåíèì êàæäûé ìîäóëü íàn+ (1 − 2γ)|zin | + γ|zi−1| + τ |ψin |,max |zin | = ||z n ||C :|zin+1 | = ||zin ||C + τ ||ψin ||C , ∀i = 0, N .||ψin ||C , òî è äëÿ max|zin+1 | =âûïîëíÿåòñÿ: ||z||C ≤ ||z ||C + τ ||ψ n ||C .
Èñïîëüçóåì ýòóðåêóððåíòíóþ (ó÷èòûâàÿ ÷òî M íå çàâèñèò îò τ è h):Òàê êàê ìû ïîëó÷èëè ýòî íåðàâåíñòâî äëÿ âñåõ||zn+1||Cîíîôîðìóëó êàên+1||zn+1n0||C ≤ ||z ||C +nXτ ||ψ k ||C ,k=0⇓||z n+1 ||C ≤ {||ψ n ||C ≤ M (τ +h2 )} ≤ M (τ +h2 )nXτ = M tn (τ +h2 ) ≤ M T (τ +h2 ).k=0⇓||zn+1||C ≤ M T (τ + h2 ) ⇒ ||z n+1 ||C → 0.Ãëàâà 4. Ðàçíîñòíûå ìåòîäû ðåøåíèÿ çàäà÷ ìàòåìàòè÷åñêîé ôèçèêè62Ñõåìà (4.4) − (4.6) èìååò ïåðâûé ïîðÿäîê òî÷íîñòè ïîòî÷íîñòè ïîτè âòîðîé ïîðÿäîêh.Ðàññìîòðèì çàäà÷ó:ny n − 2yin + yi−1yin+1 − yin+ fin ;= i+1τh2(4.8)n+1y0n+1 = 0, yN= 0, tn ∈ ωτ ;(4.9)yi0= u0 (xi ), xi ∈ ωh .Ðàññóæäàÿ àíàëîãè÷íî äëÿ ðåøåíèÿ çàäà÷è (4.8)(4.10)− (4.10)ìîæåìïîëó÷èòüàïðèîðíóþ îöåíêó.||y n+1 ||C ≤ ||y 0 ||C {= ||u0 ||C } +nXτ ||f k ||C ,k=0êîòîðàÿ îçíà÷àåò óñòîé÷èâîñòü ðàçíîñòíîé ñõåìû ïî íà÷àëüíîìó óñëîâèþ1τh2 = gamma ≤ 2 ÿâëÿåòñÿ íåîáõîäèìûì.
Äëÿ ýòîãî ðàññìîòðèì îäíîðîäíóþ ñèñòåìó óðàâíåíèé:è ïðàâîé ÷àñòè. ÏÎêàæåì ÷òî óñëîâèåny n − 2yin + yi−1yin+1 − yin= i+1, i = 1, N − 1, n = 1, j0τh2(4.11)Ðåøåíèå çàäà÷è (4.11) ãàðìîíèêà. Ïîêàæåì, ÷òî âñå ãàðìîíèêè íåîãðàíè÷åíû ïðèγ≥12 . Áóäåì èñêàòü ãàðìîíèêó â âèäå:yjn = q n eijhφ , i2 = −1, h > 0, φ ∈ R, q ∈ C.Ïîäñòàâèì ýòó ôîðìó ðåøåíèÿ â óðàâíåíèå è ïîñëå î÷åâèäíûõ ïðåîáðàçîâàíèé ïîëó÷èì:q = 1 + γ(eihφ − 2 + e−ihφ ) == 1 + γ(2 cos(hφ) − 2) = 1 + 2γ(cos(hφ) − 1) =hφ.= 1 − 4γ sin22Åñëè|q| > 1,(4.12)òî î÷åâèäíî, ÷òî ãàðìîíèêè áóäóò íåîãðàíè÷åííî âîçðàñòàòü2 hφ1 − 4γ sin2 hφ2 < 1 ⇒ 2γsin 2 > −1 ⇒12 hφ2γ ≥ 2γsin 2 ⇒ { ïðè γ > 2 , |q| > 1} ⇒ ãàðìîíèêè âîçðàñòàþò íåîãðàíè1÷åííî ⇒ çàäà÷à ðàñõîäèòñÿ.
Ñëåäîâàòåëüíî óñëîâèå γ ≤2 ÿâëÿåòñÿ íåîáõîäèìûì è äîñòàòî÷íûì. Òàêèì îáðàçîì, ÿâíàÿ ðàçíîñòíàÿ ñõåìà ÿâëÿåòñÿ1óñëîâíî (γ ≤ )ñõîäÿùåéñÿ (óñëîâíî óñòîé÷èâîé).2(ýòî áóäåò îçíà÷àòü íåóñòîé÷èâîñòü):4.2×èñòî íåÿâíàÿ ðàçíîñòíàÿ ñõåìà (ñõåìà ñîïåðåæåíèåì)Äëÿ çàäà÷è∂u∂2u ∂t = ∂x2 + f (x, t), 0 < x < 1, 0 < t ≤ Tu(0, t) = µ1 (t), u(1, t) = µ2 (t), 0 ≤ t ≤ Tu(x, 0) = u0 (x), 0 ≤ x ≤ 1(4.13)4.2.
×èñòî íåÿâíàÿ ðàçíîñòíàÿ ñõåìà (ñõåìà ñ îïåðåæåíèåì)63ðàçíîñòíàÿ ñõåìà âûãëÿäèò ñëåäóþùèì îáðàçîì: n+1 nn+1n+1yi−1−2yin+1 +yi+1y−y+ f (xi , tn+1 ), i τ i =h2n+1n+1y0 = µ1 (tn+1 ), yN = µ2 (tn+1 ), tn+1 ∈ ωt 0yi = u0 (xi ), xi ∈ ωhÂâåäåìγ=.(4.14)τh2 . Òîãäà èç (4.14) ïîëó÷àåì:n+1n+1yin+1 − yin = γ(yi−1− 2yin+1 + yi+1) + τ fin+1èëèn+1n+1γyi−1− (1 + 2γ)yin+1 + γyi+1= Fin = −(τ fin+1 + yin ), 1 ≤ i ≤ N − 1.(4.15)Ìàòðèöà ñèñòåìû èìååò ñëåäóþùèé âèä:−(2γ + 1)γA=0...ÌàòðèöàAγ−(2γ + 1)γ...0γ−(2γ + 1)...0 ... 00 ... 0 γ ...
0 ... ... ...- òðåõäèàãîíàëüíàÿ ñî ñòðîãèì äèàãîíàëüíûì ïðåîáëàäàíèåì.Ñëåäîâàòåëüíî|A| =6 0,è ñèñòåìà èìååò åäèíñòâåííîå ðåøåíèå. Åå ìîæíîðåøàòü ìåòîäîì ïðîãîíêè.Ïåðåéäåì ê èçó÷åíèþ ñõîäèìîñòè è óñòîé÷èâîñòè. Ââåäåì ïîãðåøíîñòüzin = yin − u(xi , tn ) = yin − uni .(4.16)n+1z0n+1 = zN= zi0 = 0, i = o, N .(4.17)Çàìåòèì, ÷òîÒîãäà äëÿ ïîãðåøíîñòè ìû ïîëó÷èì ñëåäóþùóþ çàäà÷ó:n+1z n+1 − 2zin+1 + zi+1zin+1 − zin= i−1+ ψin , 1 ≤ i ≤ N − 1τh2(4.18)n+1un+1+ un+1un+1− unii−1 − 2uii+1i−.h2τ(4.19)ãäåψin = fin+1 +Çàäà÷à 7.
Äîêàçàòü, ÷òî ψin = O(τ + h2 ).Ïóñòü äàëåå|zin+1| = max |zin+1 | = ||z n+1 ||C .00≤i≤NÒîãäà:zin+1− zin0 = γ(zin+1− 2zin+1+ zin+1) + τ ψin0 ,00 +100 −1(1 + 2γ)zin+1= zin0 + γ(zin+1+ zin+1) + τ ψin0 ,00 +10 −1(1 + 2γ)|zin+1| ≤ |zin0 | + γ(|zin+1| + |zin+1|) + τ |ψin0 |,00 +10 −1(1 + 2γ)||z n+1 ||C ≤ ||z n ||C + γ(||z n+1 ||C + ||z n+1 ||C ) + τ ||ψ n ||C ,||z n+1 ||C ≤ ||z n ||C + τ ||ψ n ||C ,Pn||z n+1 ||C ≤ ||z 0 ||C + k=0 τ ||ψ k ||C(4.20)Ãëàâà 4.
Ðàçíîñòíûå ìåòîäû ðåøåíèÿ çàäà÷ ìàòåìàòè÷åñêîé ôèçèêè64Íîzi0 = 0 ∀i.Çíà÷èò,||z n+1 ||C ≤nXτ ||ψ k ||C(4.21)k=0k||C ≤ M (τ + h2 ) (èç çàäà÷è 7),P||ψnk=0 τ ≤ T , ïîëó÷àåì, ÷òîÒàê êàêèh,àïðè÷åì||z n+1 ||C ≤ M T (τ + h2 ) → 0ïðèM >0h.ττ, h → 0.(4.22)τè âòîðîãî ïîðÿä-Òàêèì îáðàçîì ìû èìååì ñõîäèìîñòü ïåðâîãî ïîðÿäêà ïîêà ïîè íå çàâèñèò îòÒàê êàê ïðè ïîëó÷åíèè îöåíêè íå òðåáîâàëîñü íèêàêèõ îãðàíè÷å-íèé, òî ÷èñòî íåÿâíàÿ ðàçíîñòíàÿ ñõåìà àáñîëþòíàÿ ñõîäÿùàÿñÿ â îòëè÷èåîò ÿâíîé ðàçíîñòíîé ñõåìû. ñëó÷àåµ1 = µ2 = 0:||y n+1 ||C ≤ ||u0 ||C +nXτ ||f k ||C .(4.23)k=0Íåÿâíàÿ ðàçíîñòíàÿ ñõåìà óñòîé÷èâà ïî íà÷àëüíîìó ïðèáëèæåíèþ è ïðàâîé ÷àñòè (âîîáùå, èç óñòîé÷èâîñòè ïî íà÷àëüíîìó ïðèáëèæåíèþ ñëåäóåòóñòîé÷èâîñòü ïî ïðàâîé ÷àñòè)4.3Ñèììåòðè÷íàÿ ðàçíîñòíàÿ ñõåìà (ñõåìà Êðàíêà-Íèêîëüñîíà)Ââåäåì âòîðóþ ðàçíîñòíóþ ïðîèçâîäíóþ ïî ïðîñòðàíñòâåííîé ïåðåìåííîé:m=yxximmyi−1− 2yim + yi+1.2h(4.24)Ðàçíîñòíàÿ ñõåìà èìååò âèä: n+1 n−yyn+1n i τ i = 0.5(yxxi + yxxi ) + f (xi , tn+1/2 ), ãäå tn+1/2 = tn + 0.5τn+1n+1y0 = µ1 (tn+1 ), yN = µ2 (tn+1 ), tn+1 ∈ ωt 0yi = u0 (xi ), xi ∈ ωh.(4.25)Àíàëîãè÷íî ÷èñòî íåÿâíîé ñõåìå ìîæíî äîêàçàòü ñóùåñòâîâàíèå è åäèíñòâåííîñòü ðåøåíèÿ ýòîé çàäà÷è.
Äëÿ ïîãðåøíîñòèzin = yin − uniçàäà÷àçàïèøåòñÿ ñëåäóþùèì îáðàçîì: n+1 nz−zn+1n+ zxx) + ψin , (xi , tn+1 ) ∈ ωτ h i τ i = 0.5(zxxii nun+1 −unn+1ψi = f (xi , tn+1/2 ) + 0.5(uxxi + unxxi ) − i τ in+1z0n+1 = zN=0 0zi = 0(4.26)Çàäà÷à 8. Äîêàçàòü, ÷òî ψin = O(τ 2 + h2 ) (ðàçëîæåíèå íàäî ïðîâîäèòü âóçëå tn+1/2 ).4.3. Ñèììåòðè÷íàÿ ðàçíîñòíàÿ ñõåìà (ñõåìà Êðàíêà-Íèêîëüñîíà)C äàííîé ñõåìå ïîëó÷èòü ñõîäèìîñòü â íîðìåî÷åíü ñëîæíî. Ñõîäè-ìîñòü è óñòîé÷èâîñòü ïðîùå äîêàçàòü, èñïîëüçóÿ íîðìó||zn+1NX||L2 (ωh ) =!1/2zi2 hZL2 (ωh ):! 1/2bf 2 dxàíàëîã.ai=04.3.165Çàäà÷à Øòóðìà-ËèóâèëëÿÇàäà÷à Øòóðìà-Ëèóâèëëÿ äëÿ äèôôåðåíöèàëüíîãî óðàâíåíèÿ âòîðîãî ïîðÿäêà èìååò âèä: 2d u dx2 + λu(x) = 0, 0 < x < 1x ∈ (0, 1) : u(x) 6= 0u(0) = u(1) = 0.(4.27)Èçâåñòíî, ÷òî ðåøåíèåì äàííîé çàäà÷è ÿâëÿþòñÿ ñîáñòâåííûå çíà÷åíèÿè ñîáñòâåííûå ôóíêöèèuk (x), k = 1, 2, .
. ..λkÂûáåðåì òàêîå ðåøåíèå:λk = (πk)2 , k = 1, 2, . . .√uk (x) = 2 sin πkx, k = 1, 2, . . .(ñîáñòâåííûå ôóíêöèè îïðåäåëåíû ñ òî÷íîñòüþ äî êîíñòàíòû)√2) áàçèñ ïðîñòðàíñòâà{uk (x)}∞1 - îðòîíîðìèðîâàííûé (çà ñ÷åòR1L2 = {f (x) : [0, 1] → R | f (x) ∈ C[0, 1], f (0) = f (1) = 0, 0 f 2 dx < ∞} cR1ñêàëÿðíûì ïðîèçâåäåíèåì (f, g) =f (x)g(x)dx è íîðìîé ||f || = (f, f )1/20Òîãäà(Ãèëüáåðòîâî ïðîñòðàíñòâî). À çíà÷èò, ïî íåìó ìîæíî îäíîçíà÷íî ðàçëîæèòü ëþáóþ ôóíêöèþ èçf (x) =∞XL2 :ck uk (x)(ck- êîýôôèöèåíòû Ôóðüå).k=1Òîãäà èìååò ìåñòî ðàâåíñòâî Ïàðñåâàëÿ:||f (x)||2 =∞Xc2k .k=1Òåïåðü ïåðåéäåì ê äèñêðåòíîìó àíàëîãó çàäà÷è Øòóðìà-Ëèóâèëëÿ:yxxi + λyi = 0, i = 1, N − 1i : yi 6= 0y0 = yN = 0.(4.28)Äàëåå:yi−1 −2yi +yi+1h2+ λyi = 0 ⇒⇒ yi−1 + yi+1 = (−λh2 + 2)yi .Ïî àíàëîãèèyi = y(xi )áóäåì èñêàòü â âèäåsin αxi ,ãäåα âåùåñòâåííîå÷èñëî.