Н.И. Ионкин - Электронные лекции (2008) (1135232), страница 9
Текст из файла (страница 9)
Òîãäà:yi−1 + yi+1 = sin α(xi − h) + sin α(xi + h) = 2 sin αxi cos αh = (−λh2 + 2) sin αxi ⇒⇒ (òàêêàê∃i : yi 6= 0) ⇒ λh2 = −2(cosαh − 1) = 4 sin2αh2 .Ãëàâà 4. Ðàçíîñòíûå ìåòîäû ðåøåíèÿ çàäà÷ ìàòåìàòè÷åñêîé ôèçèêè66Òàêèì îáðàçîì,λ=αíàõîäèòñÿ èç êðàåâîãî óñëîâèÿ:αh4sin2.h22α = πk, y0 = 0.(4.29)Ïîëó÷àåì:yk (xi ) = sin πkxi ,(4.30)4πkhsin2,2h2(4.31)λk =ãäåk = 1, N − 1.L2 : Hn−1 - ïðîñòðàíñòâî ñåòî÷íûõ ôóíêf (0) = f (1) = 0.  íåì ââåäåì ñêàëÿðíîå ïðîèçâåäåíèå (f, g) =PN −1f )1/2 . Àíàëîãè÷íî, ñèñòåìà ñîáñòâåíi=1 f (xi )g(xi )h è íîðìó√ ||f || = (f,N −1íûõ ôóíêöèé {yk (xi ) =2 sin πkxi }1- îðòîíîðìèðîâàííûé áàçèñ, è ëþÂâåäåì ñåòî÷íûé àíàëîãöèé:áàÿ ôóíêöèÿ èç ýòîãî ïðîñòðàíñòâà ìîæåò áûòü ïðåäñòàâëåíà ñëåäóþùèìPN −1PN −1c2k .ψ(xi ) =4.3.2Äîêàçàòåëüñòâî ñõîäèìîñòè ñõåìûk=1ck yk (xi )||ψ||2 =îáðàçîì:èk=1Âåðíåìñÿ ê (4.26): n+1 n−zizin+1n+ zxx) + ψin , (xi , tn+1 ) ∈ ωτ h= 0.5(zxxτii n−unun+1niiψi = f (xi , tn+1/2 ) + 0.5(un+1xxi + uxxi ) −τn+1n+1z0 = zN = 0 0zi = 0Ðàçëîæèìzinèψinïî áàçèñó èç ñîáñòâåííûõ ôóíêöèézin =ψin=PN −1k=1PN −1k=1µk (xi ):ck (tn )µk (xi )k(4.32)kψ (tn )µ (xi ).(4.33)Ïîäñòàâèâ â ïåðâîå óðàâíåíèå ñèñòåìû (4.26) ïîëó÷èì:N−1Xµk (xi )(ck (tn+1 ) − ck (tn )) =k=1=0.5τN−1Xµxk (xi )(ck (tn+1 ) + ck (tn )) + τk=1ÍîÇíà÷èò,N−1Xψ k (tn )µk (xi ).k=1µxk (xi )= −λ.µk (xi )∀k :ck (tn+1 ) − ck (tn )= −0.5λk (ck (tn+1 ) + ck (tn )) + ψ k (tn ) ⇒τ⇒ ck (tn+1 )(1 + 0.5τ λk ) = ck (tn )(1 − 0.5τ λk ) + τ ψ k (tn ) ⇒1 − 0.5τ λkτ⇒ ck (tn+1 ) =ck (tn ) +ψ k (tn ).1 + 0.5τ λk1 + 0.5τ λk4.3.
Ñèììåòðè÷íàÿ ðàçíîñòíàÿ ñõåìà (ñõåìà Êðàíêà-Íèêîëüñîíà)67È ïóñòü äàëååqk =1 − 0.5τ λk, |q| ≤ 1.1 + 0.5τ λkÒîãäà:zin+1 =N−1Xck (tn+1 )µk (xi ) =k=1=N−1Xk=1=vin+1qk ck (tn )µk (xi ) +N−1Xk=1+τψ k (tn )µk (xi ) =1 + 0.5τ λkwin+1Ñëåäîâàòåëüíî,||z n+1 || ≤ ||v n+1 || + ||wn+1 ||.Îöåíèì||vn+1(4.34)||:||vn+1 2|| =N−1Xqk2 c2k (tn )≤k=1Òåïåðü îöåíèìN−1Xc2k (tn ) = ||z n ||2 .(4.35)k=1||wn+1 ||:||wn+1 ||2 ≤ τ 2 ||ψ n ||2 .(4.36)Ïîëó÷àåì, ÷òî||z n+1 || ≤ ||z n || + τ ||ψ n || ≤ ||z 0 || +N−1Xτ ||ψ k ||k=1Íî||ψ k || ≤ M (τ 2 + h2 )(èç çàäà÷è (8)).
À çíà÷èò:||z n+1 || ≤ M T (τ 2 + h2 ) → 0Çàìå÷àíèå.ïðèτ, h → 0.(4.37)Åñëè ðàññìàòðèâàòü ðàçíîñòíóþ ñõåìó ñ îäíîðîäíûìè êðàå-âûìè óñëîâèÿìè, òî, ïðîâîäÿ àíàëîãè÷íûå ðàññóæäåíèÿ, ìîæíî ïîëó÷èòüîöåíêó||y n+1 || ≤ ||u0 || +N−1Xτ ||f k ||.(4.38)k=1Ýòà îöåíêà îçíà÷àåò óñòîé÷èâîñòü ðàçíîñòíîé ñõåìû ïî íà÷àëüíûì äàííûìè ïî ïðàâîé ÷àñòè.4.3.3Ðàçíîñòíàÿ ñõåìà ñ âåñàìè. Ïîãðåøíîñòü àïïðîêñèìàöèèÌû ïðîäîëæàåì ðàññìàòðèâàòü çàäà÷ó (4.1) (4.3).yin+1 − yinn+1n= σyx̄x,i+ (1 − σ)yx̄x,i+ φniτy0n+1 = µ1 (tn+1 )n+1yN= µ2 (tn+1 )yi0 = u0 (xi )(4.39)Ãëàâà 4. Ðàçíîñòíûå ìåòîäû ðåøåíèÿ çàäà÷ ìàòåìàòè÷åñêîé ôèçèêè68Òàêèì îáðàçîì îïèñàíî îäíîïàðàìåòðè÷åñêîå ñåìåéñòâî ðàçíîñòíûõñõåì (ñ ïàðàìåòðîìÄëÿ ðàçëè÷íûõσ ∈ R).σ ïîëó÷àåì:1.σ=0 ÿâíàÿ ðàçíîñòíàÿ ñõåìà2.σ=1 ÷èñòî íåÿâíàÿ ñõåìà3.σ = 0.5 ñèììåòðè÷íàÿ ñõåìàÂâåä¼ì ïîãðåøíîñòüzin = yin − uni .zin+1 − zinn+1n= σzx̄x,i+ (1 − σ)zx̄x,i+ φniτn+1z0n+1 = zN= zi0 = 0Ïîãðåøíîñòü àïïðîêñèìàöèè (4.39) íà ðåøåíèè:nψin = σun+1x̄x,i + (1 − σ)ux̄x,i −un+1− unii+ φniτ(4.40)∂uu0 = ∂u∂x , u̇ = ∂t .
Ôóíêöèÿ u ÷åòûðåæäû íåïðåðûâíî äèôôåðåíöèðóåìà ïî x è òðèæäû ïî t. Ðàçëîæèì å¼ ïî ôîðìóëå Òåéëîðà âîêðåñòíîñòè òî÷êè (xi , tn+ 1 ):2Îáîçíà÷èìh2 00 h3 000 h4 0000u + ui + ui + O(h5 )2 i624234hhhui−1 = ui − hu0i + u00i − u000u0000 + O(h5 )i +2624 iττ2τ 3 ...u i (tn+ 1 ) + O(τ 4 )un+1= ui (tn+ 12 ) + u̇i (tn+ 12 ) + üi (tn+ 12 ) +i2284823τττ ...u i (tn+ 1 ) + O(τ 4 )uni = ui (tn+ 21 ) − u̇i (tn+ 12 ) + üi (tn+ 21 ) −228482ui+1 − 2ui + ui−1hux̄x,i == u00i + u0000+ O(h4 )h212 iun+1− unii= u̇i (tn+ 12 ) + O(τ 2 )τui+1 = ui + hu0i +Îòñþäà, èñïîëüçóÿ íåðàâåíñòâîτ h2 ≤τ 2 +h4:2τ 00 h2 0000u̇ + ui + O(h4 ) + O(τ 2 ))+2 i12τh2+ (1 − σ)(u00i − u̇00i + u0000+ O(τ 2 + h4 ))−212 i− u̇i + φni + O(τ 2 + h4 ) =ψi00 = σ(u00i += (u00i − u̇i + φni ) + (σ − 0.5)τ u̇00 +h2 0000u + O(τ 2 + h4 )12 i4.4. Ðàçíîñòíàÿ ñõåìà äëÿ óðàâíåíèÿ Ïóàññîíà (çàäà÷à Äèðèõëå)Ïðîäèôôåðåíöèðîâàâ óðàâíåíèåu00 − u̇ + f = 0äâàæäû ïîx69ïîëó÷èì:u0000 − u̇00 + f 00 = 0u̇00 = f 00 + u0000Ïîëó÷àåì:ψin = u00i − u̇i + f (xi , tn+ 12 ) +φi − f (xi , tn+ 12 )+{z}|=0h2+ (σ − 0.5)τ +u̇00 + O(t2 + h4 )12Òàêèì îáðàçîì, ïîðÿäîê òî÷íîñòè çàâèñèò îò ïàðàìåòðà ñõåìû:1.σ = σ∗ =12−h212τ :h2 00f (xi , tn+ 12 )12ψin = O(τ 2 + h4 )φni = f (xi , tn+ 12 ) +2.σ = 0.5:φni = f (xi , tn+ 21 ) + O(h2 ) + O(τ 2 )ψin = O(τ 2 + h2 )3.σ=1èëèσ = 0:φni = f (xi , tn )ψin = O(τ + h2 )4.4GÐàçíîñòíàÿ ñõåìà äëÿ óðàâíåíèÿ Ïóàññîíà(çàäà÷à Äèðèõëå)- âíóòðåííèå òî÷êè ïðÿìîóãîëüíèêà,x2l2ΓΓ- ãðàíèöà.G = {(x1 , x2 ) : 0 < x1 < l1 , 0 < x2 < l2 }ΓG=G∪ΓGΓΓl1x1∂2u ∂2u+= f (x1 , x2 ), (x1 , x2 ) ∈ G∂x21∂x22u|Γ = µ(x1 , x2 )(4.41)(4.42)70Ãëàâà 4.
Ðàçíîñòíûå ìåòîäû ðåøåíèÿ çàäà÷ ìàòåìàòè÷åñêîé ôèçèêèÂâåä¼ì ñåòêó:x2l2nωh = (xi1 , xj2 ) : xi1 = ih1 , i = 1, N1 − 1, N1 h1 = l1xj2 = jh2 , j = 1, N2 − 1, N2 h2 = l2N −1N −1h2oN −1221Γh = {x0,j }j=1∪ {xN1 ,j }j=1∪ {xi,0 }i=1∪h1l1x1N −11∪ {xi,N2 }i=1ωh = ωh ∪ Γ hÒåïåðü ââåä¼ì ðàçíîñòíóþ çàäà÷ó:yx1 x1 ,ijyx2 x2 ,ijyi+1,j − 2yi,j + yi−1,j∂ 2 u + O(h21 )=≈h21∂x21 xi ,xj 1 2yi,j+1 − 2yi,j + yi,j−1∂ 2 u + O(h22 )=≈h22∂x22 xi ,xj1yij =y(xi1 , xj2 ), fij=(xi1 , xj2 ) ∈ ωhyx1 x1 ,ij + yx2 x2 ,ij = fij ,yij |Γh =µ(xi1 , xj2 ),2f (xi1 , xj2 )(xi1 , xj2 )∈ Γh(4.43)(4.44)Ñõåìà ïðåäñòàâëÿåòñÿ øàáëîíîì òèïà ¾êðåñò¿ (ðèñóíîê 4.1).j+1h2i−1h1i+1i, jj−1Ðèñ.
4.1: Øàáëîí òèïà ¾êðåñò¿ äëÿ ðàçíîñòíîé ñõåìûÂâåä¼ì ïîãðåøíîñòüzij = yij −uij . Òîãäà äëÿ zijìû ïîëó÷àåì óðàâíåíèÿàíàëîãè÷íûå (4.43),(4.44):zx1 x1 ,ij + zx2 x2 ,ij = −φij ,ψij(xi1 , xj2 ) ∈ ωh(4.45)zij |Γh = 0(4.46)ψij = yx1 x1 ,ij + yx2 x2 ,ij − fij(4.47) ïîãðåøíîñòü àïïðîêñèìàöèè ðàçíîñòíîé ñõåìû (4.43) (4.44) íàðåøåíèè çàäà÷è (4.41) (4.42).Çàäà÷åé äàííîãî ðàçäåëà ÿâëÿåòñÿ äîêàçàòü, ÷òî ïîãðåøíîñòü ñõåìûψij = O(h21 + h22 ).4.4. Ðàçíîñòíàÿ ñõåìà äëÿ óðàâíåíèÿ Ïóàññîíà (çàäà÷à Äèðèõëå)4.4.171Ðàçðåøèìîñòü ðàçíîñòíîé çàäà÷è Äèðèõëå óðàâíåíèÿ ÏóàññîíàÐàçíîñòíóþ ñõåìó (4.43) ðàñïèøåì ïîêîîðäèíàòíî:(yi+1,j −2yi,j +yi−1,jh21+yij |Γh = µijyi,j+1 −2yi,j +yi,j−1h22= fij , i ∈ 1, N1 − 1, j ∈ 1, N2 − 1(4.48)Ñèñòåìà (4.48) ÿâëÿåòñÿ ñèñòåìîé ëèíåéíûõ àëãåáðàè÷åñêèõ óðàâíåíèé.Äîêàæåì, ÷òî ðåøåíèå ýòîé ñèñòåìû ñóùåñòâóåò äëÿ ëþáûõ ïðàâûõ ÷àñòåéfè ãðàíè÷íûõ óñëîâèÿõµ.Äëÿ ýòîãî ïåðåïèøåì ñõåìó îòíîñèòåëüíî öåíòðàëüíûõ ýëåìåíòîâ:22+ 2h21h2yij =yi+1,j + yi−1,jyi,j+1 + yi,j−1+− fijh21h22Åñëè ìû ïîêàæåì, ÷òî îäíîðîäíàÿ ñèñòåìà èìååò òîëüêî òðèâèàëüíîåðåøåíèå, òî âñÿ çàäà÷à áóäåò èìåòü åäèíñòâåííîå ðåøåíèå ïðè ëþáîé ïðàâîé÷àñòè.( 2h21+2h22vij =vi+1,j +vi−1,jh21+vi,j+1 +vi,j−1h22(4.49)vij |Γh = 0Òåîðåìà 6.
Ñèñòåìà ëèíåéíûõ àëãåáðàè÷åñêèõ óðàâíåíèéåäèíñòâåííîå ðåøåíèå vij ≡ 0, xij ∈ ωh .Äîêàçàòåëüñòâî.Îò ïðîòèâíîãî: ïóñòü∃xi0 ,j0 : vi0 ,j0 6= 0.(4.49)èìååòÏðèìåíèì ÿâíîïðèíöèï ìàêñèìóìà:kvkC = max |uij |0≤i≤N10≤j≤N2Ïóñòü óçåë(i0 , j0 )îáëàäàåò ñëåäóþùèìè ñâîéñòâàìè:• |vi0 ,j0 | = kvkC• ∃(i, j) : |i − i0 | ≤ 1, |j − j0 | ≤ 1, |vij | < |vi0 ,j0 |Åñëè áû òàêîãî óçëà íå ñóùåñòâîâàëî, òîvij |Γh = 0 ⇒ v ≡ 0,÷òî ïðîòè-âîðå÷èò ïðåäïîëîæåíèþ, ñëåäîâàòåëüíî òàêîé óçåë ñóùåñòâóåò.22vi +1,j0 + vi0 −1,j0vi ,j +1 + vi0 ,j0 −1+ 2 vi0 ,j0 = 0+ 0 022h1hh1h22222|vi +1,j0 | + |vi0 −1,j0 | |vi0 ,j0 +1 | + |vi0 ,j0 −1 |+ 2 |vi0 ,j0 | ≤ 0+2h1h2h21h22|vij | < |vi0 ,j0 |:2 kvkC2 kvkC22+|vi0 ,j0 | <+h21h22h21h22Òàê êàê â îäíîì èç óçëîâ72Ãëàâà 4.
Ðàçíîñòíûå ìåòîäû ðåøåíèÿ çàäà÷ ìàòåìàòè÷åñêîé ôèçèêèÒàê êàê|vi0 ,j0 | = kvkC :2222+|v|<+|vi0 ,j0 |i0 ,j0h21h22h21h22Ïðèøëè ê ïðîòèâîðå÷èþ, ñëåäîâàòåëüíîÑëåäñòâèå.Ðàçíîñòíàÿ çàäà÷à (4.41) èìååò åäèíñòâåííîå ðåøåíèå äëÿ ëþ-áûõ ïðàâûõ ÷àñòåé4.4.2v ≡ 0.f, µ.Ñõîäèìîñòü ðàçíîñòíîé çàäà÷èÄëÿ ïîãðåøíîñòè ñóùåñòâóåò çàäà÷à (4.45) (4.47). Òðåáóåòñÿ ïîëó÷èòüîöåíêó:kzkC ≤ M kψkC ,ÒîãäàkzkC → 0ïðèMíå çàâèñèò îòh1 , h2(4.50)h1 → 0, h2 → 0.Ââåä¼ì ðàçíîñòíûé îïåðàòîð:Lh vij =22+ 22h1h2vi,j −vi+1,j − vi−1,jvi,j+1 + vi,j−1+2h1h22(4.51)Òåîðåìà 7(Ïðèíöèï ìàêñèìóìà).
Ïóñòü vij ≥ 0, xij ∈ Γh , è Lh vij ≥0, xij ∈ ωh . Òîãäà vij ≥ 0 âñþäó (xij ∈ ωh ).Äîêàçàòåëüñòâî.Îò ïðîòèâíîãî: ïóñòü ñóùåñòâóåòòàêèõ óçëîâ âûáåðåì óçåëxi0 ,j0 ,xij : vij < 0.Ñðåäèòàêîé ÷òî:• vi0 ,j0 < 0• ∃vij : |i − i0 | ≤ 1, |j − j0 | ≤ 1, vi0 ,j0 < vijÒàêîé óçåë ñóùåñòâóåò, òàê êàê èíà÷å âñåïî óñëîâèþvijáûëè áû îòðèöàòåëüíûìè, àvij ≥ 0, xij ∈ Γh .Lh vi0 ,j0 vi0 ,j0 − vi0 +1,j0vi0 ,j0 − vi0 −1,j0=++h21h21 vi0 ,j0 − vi0 ,j0 +1vi0 ,j0 − vi0 ,j0 −1++h21h21vi0 ,j0 ñëåäóåò, ÷òî îäíà èç ñêîáîê îòðèöàLh vi0 ,j0 < 0, ÷òî ïðèâîäèò íàñ ê ïðîòèâîðå÷èþ.Èç âòîðîãî óñëîâèÿ âûáîðàòåëüíà, ñëåäîâàòåëüíîÑëåäñòâèå.Lh yij = φij , xij ∈ ωhyij çàäàíî, xij ∈ Γh(4.52)Lh Yij = Φij , xij ∈ ωhYij çàäàíî, xij ∈ Γh(4.53)Ïóñòü âûïîëíåíû ñëåäóþùèå óñëîâèÿ:Òîãäà|yij | ≤ Yij|yij | ≤ Yij ,xij ∈ Γh(4.54)|φij | ≤ Φij ,xij ∈ ωh(4.55)âñþäó (xij∈ ωh ).4.4.
Ðàçíîñòíàÿ ñõåìà äëÿ óðàâíåíèÿ Ïóàññîíà (çàäà÷à Äèðèõëå)Äîêàçàòåëüñòâî.73Ïîëîæèì:vij = Yij + yij( v|Γh ≥ 0)wij = Yij − yij( w|Γh ≥ 0)Òîãäà:Lh vij = Φij + φij ≥ 0,xij ∈ ωhLh wij = Φij − φij ≥ 0,xij ∈ ωhÏî òåîðåìå 7:vij ≥ 0, wij ≥ 0 ∀xij ∈ ωhñëåäîâàòåëüíî|yij | ≤ Yij∀xij ∈ ωhÄëÿ äîêàçàòåëüñòâà ñõîäèìîñòè ðàçíîñòíîé ñõåìû íåîáõîäèìî ïîäîáðàòü ìàæîðàíòóYòàê, ÷òîáû âûïîëíÿëîñü:Lh Yij = K1 ,Áóäåì èñêàòüYK1 = const > 0â âèäå:(i)(j)Yij = l12 + l22 − (x1 )2 − (x2 )2 K,K>0Yij ≥ 0, xij ∈ ωhLh Yij = 4KÏîëîæèì:0 = |zij |Γh≤ Yij 4K = kψkC)Γh4K = kψkC ≥ |ψij |, xij ∈ ωh⇒ |zij | ≤ Yij , zij ∈ ωhl12 + l22kψkC ⇒ kzkC ≤ M kψkC4ψ = O(h21 + h22 ) ⇒ kψkC ≤ M (l12 + l22 ) ⇒ kzkC ≤ M2 (h21 + h22 )kzkC ≤ Yij ≤ (l12 + l22 )K =Îöåíêà (4.57) íå çàâèñèò îòM2(4.56)(4.57)è ãîâîðèò î òîì, ÷òî èìååò ìåñòî ñõîäè-ìîñòü ðàçíîñòíîé ñõåìû.Òåîðåìà 8.