Н.И. Ионкин - Электронные лекции (2008) (1135232), страница 11
Текст из файла (страница 11)
Îáùèé M-ýòàïíûé ìåòîä Ðóíãå-Êóòòà81Ïîãðåøíîñòü îáùåãî äâóõýòàïíîãî ìåòîäà Ðóíãå-Êóòòàyn+1 −yn= σ1 K1τK1 = f (tn , yn )K2 = f (tn + a2 τ, yn + b21 τ K1 )+ σ2 K 2Âûâåäåì ïîãðåøíîñòü àïïðîêñèìàöèè:ψn = −un+1 − un+ σ1 f (tn , un ) + σ2 f (tn + a2 τ, un + b21 τ f (tn , un ))τun+1 − unτ= u0n + u00n + O(τ 2 )τ2Ðàçëîæèìf (tn + a2 τ, un + b21 τ f (tn , un ))â îêðåñòíîñòè òî÷êè(tn , un ):∂fn∂fn+ b2 τfn + O(τ 2 )∂τ∂ud∂fn∂fn du∂fn∂fnd+=+fnu00n = (u0n ) = (f (tn , un )) =dt dt∂t∂t∂u∂u dtτ ∂fn∂fn∂fn∂fnψn = −u0n −+fn + σ1 fn + σ2 fn + a2 τ+ b21 τfn2∂t∂u∂t∂u∂fn∂fn+ (σ2 b21 − 0.5)τfn + O(τ 2 )ψn = −u0n + (σ1 + σ2 )fn + τ (σ2 a2 − 0.5)∂t∂uf (tn + a2 τ, un + b21 τ f (tn , un )) = f (tn , un ) + a2 τÂûÿñíèì äîïóñòèìûå çíà÷åíèÿ ïàðàìåòðîâ:1.σ1 + σ2 = 0,èíà÷å ñõåìà íå àïïðîêñèìèðóåò çàäà÷ó;2. ÷òîáû äîñòè÷ü âòîðîãî ïîðÿäêà àïïðîêñèìàöèè íåîáõîäèìî îáíóëèòü÷ëåíû ñÏóñòüτ,ñëåäîâàòåëüíîσ2 = σ, σ1 = 1 − σ .a2 σ2 = 0.5 = b21 σ2Òîãäà îáùàÿ ñõåìà ïðèìåò âèä:yn+1 − yn= (1 − σ)K1 + σK2τ ðàíåå ðàññìîòðåííîé ñõåìå ïðåäèêòîðêîððåêòîð(5.6)σ = 1, a = 0.5,ñëå-äîâàòåëüíî ó íå¼ âòîðîé ïîðÿäîê àïïðîêñèìàöèè.Ïóñòüσ = 0.5, a = 1.Òàêàÿ ñõåìà íàçûâàåòñÿ ñèììåòðè÷íîé è èìååòâèä:yn+1 − ynf (tn , yn ) + f (tn + τ, yn + τ fn )=τ25.2Îáùèé m-ýòàïíûé ìåòîä Ðóíãå-ÊóòòàÇàïèøåìm-ýòàïíûéðàçíîñòíûé ìåòîä Ðóíãå-Êóòòà äëÿ çàäà÷è (5.1):yn+1 − yn= σ1 K1 + σ2 K2 + · · · + σm Kmτ(5.7)Ãëàâà 5.
Ìåòîäû ðåøåíèÿ ÎÄÓ è ñèñòåì ÎÄÓ82K1 = f (tn , yn )K2 = f (tn + a2 τ, yn + b21 τ K1 )K3 = f (tn + a3 τ, yn + b31 τ K1 + b32 τ K2 )...Km = f (tn + am τ, yn + bm1 τ K1 + bm2 τ K2 + · · · + bm,m−1 τ Km−1mXσi = 1 óñëîâèå àïïðîêñèìàöèèi=15.2.1Òð¼õýòàïíûé ìåòîä Ðóíãå-Êóòòàyn+1 − yn1= (K1 + 4K2 + K3 )τ6K1 = f (tn , yn ) = fnK2 = f (tn + 0.5τ, yn + 0.5τ K1 )K4 = f (tn + τ, yn − τ K1 + 2τ K3 )Ïîãðåøíîñòü àïïðîêñèìàöèè ñîñòàâëÿåò5.2.2O(τ 3 )×åòûð¼õýòàïíûé ìåòîä Ðóíãå-Êóòòà1yn+1 − yn= (K1 + 2K2 + 2K3 + K4 )τ6K1 = f (tn , yn ) = fnK2 = f (tn + 0.5τ, yn + 0.5τ K1 )K3 = f (tn + 0.5τ, yn + 0.5τ K2 )K4 = f (tn + τ, yn + τ K3 )Ïîãðåøíîñòü àïïðîêñèìàöèè ñîñòàâëÿåò5.2.3O(τ 4 ).Îöåíêà òî÷íîñòè íà ïðèìåðå äâóõýòàïíîãî ìåòîäàyn+1 − yn= (1 − σ)f (tn , yn ) + σf (tn + aτ, yn + aτ f (tn , yn ))τ(5.8)y0 = u0zn = yn − u(tn ) = yn − unÍåîáõîäèìî ïîëó÷èòü îöåíêó|zn | ≤ M kψk, M > 0íå çàâèñèò îòτ.zn+1 − zn(2)= ψn + φ(1)n + φnτun+1 − un+ (1 − σ)f (tn , un ) + σf (tn + aτ, un + aτ f (tn , un ))τφ(1)n = (1 − σ) (f (tn + aτ, yn + aτ f (tn , yn )) − f (tn , un ))ψn = −φ(2)n = σ (f (tn + aτ, yn + aτ f (tn , yn )) − f (tn + aτ, un + aτ f (tn , un )))5.3.
Ìíîãîøàãîâûå ðàçíîñòíûå ìåòîäûÏðèσa = 0.5 ψn = O(τ 2 ).83σ ∈ [0, 1], a ≥ 0L:Ïóñòü òåïåðüâëåòâîðÿåò óñëîâèþ Ëèïøèöà ñ êîíñòàíòîéèf (t, u)|f (t, u) − f (t, v)| ≤ L|u − v|(1)Îöåíèì φn èóäî-(5.9)(2)φn :|φ(1)n | ≤ (1 − σ)|f (tn , yn ) − f (tn , un )| ≤ (1 − σ)L|zn ||φ(2)n | ≤ σL|yn + aτ f (tn , yn ) − un − aτ f (tn , un )||φ(2)n | = σL|(yn − un ) + aτ (f (tn , yn ) − f (tn , un ))||φ(2)n | ≤ σL (|yn − un | + aτ |f (tn , yn ) − f (tn , un )|)|φ(2)n | ≤ σL(|zn | + aτ L|yn − un |) = σL(1 + aτ L)|zn |Äîïóñòèì, ÷òîσa ≤ 0.5:2|φ(2)n | ≤ (σL + 0.5τ L )|zn |(2)2|φ(1)n | + |φn | ≤ (1 − σ)L|zn | + (σL + 0.5τ L )|zn | = (1 + 0.5τ L)L|zn |(2)zn+1 = zn + τ ψn + τ (|φ(1)n | + |φn |)|zn+1 | ≤ |zn | + τ |ψn | + τ L(1 + 0.5τ L)|zn | = (1 + τ L + 0.5τ 2 L2 )|zn | + τ |ψn |Çàìåòèì, ÷òîôóíêöèèτLρ=e1 + τ L + 0.5τ 2 L2 ïåðâûå ÷ëåíû ðàçëîæåíèÿ ïî Òåéëîðó:|zn+1 | ≤ ρ|zn | + τ |ψn |nXτ ρn−j |ψj ||zn+1 | ≤ ρn+1 |z0 | +| {z }j=0z0 =0|zn+1 | ≤ max |ψj |eLtn+10≤j≤nnXτ = max |ψj |eLtn+1 tn+10≤j≤nj=0tn+1 eLtn+1 ≤ T eLT = M,Òàêèì îáðàçîì, ïîëó÷åíà îöåíêàíå çàâèñèò îòτ|zn | ≤ M kψk, M > 0íå çàâèñèò îòÑëåäîâàòåëüíî, èìååò ìåñòî ñõîäèìîñòü ñ òåì æå ïîðÿäêîì, ÷òî è óτ.ψ.Ïðèìåðû äâóõøàãîâûõ ñõåì:1.
Ñèììåòðè÷íàÿ ñõåìà:σ = 0.5, a = 1,2. Ñõåìà ïðåäèêòîðêîððåêòîð:3. Ñõåìà Ýéëåðà:5.3σ = 0,âòîðîé ïîðÿäîê òî÷íîñòè;σ = 1, a = 0.5, âòîðîé ïîðÿäîê òî÷íîñòè;ïåðâûé ïîðÿäîê òî÷íîñòèÌíîãîøàãîâûå ðàçíîñòíûå ìåòîäûÎïðåäåëåíèå 28.Ëèíåéíûìm-øàãîâûìðàçíîñòíûì ìåòîäîì ðåøåíèÿçàäà÷è (5.1) íàçûâàåòñÿ ìåòîä, çàïèñàííûé óðàâíåíèåì:mXakk=0τ- øàã,ak , bk- êîíñòàíòû,τyn−k =mXk=0a0 6= 0, bm 6= 0bk fn−k(5.10)Ãëàâà 5. Ìåòîäû ðåøåíèÿ ÎÄÓ è ñèñòåì ÎÄÓ84Äëÿ íà÷àëà ðàáîòû íåîáõîäèìû çíà÷åíèÿy0 , y1 , .
. . , ym−1 . Ýòî íàçûâàåò-ñÿ ðàçãîííûì ýòàïîì, è äëÿ íåãî ìîæíî ïðèìåíèòü, íàïðèìåð, ìåòîä ÐóíãåÊóòòà.Åñëèb0 = 0,òî ìåòîä ÿâëÿåòñÿ ÿâíûì:mmk=1k=1XX aka0yn =yn−kbk fn−k −ττÅñëèb0 6= 0,òî ìåòîä ÿâëÿåòñÿ íåÿâíûì:mXa0akyn − b0 fn =bk fn−k − yn−kττ(5.11)k=1Íåëèíåéíûå óðàâíåíèÿ (5.11) ìîæíî ðåøàòü ìåòîäîì Íüþòîíà ñ íà÷àëü-(0)yn = yn−1 .íûì ïðèáëèæåíèåìÒàê êàêakèbkâõîäÿò â óðàâíåíèÿ îäíîðîäíî, òî ìîæíî íàëîæèòüóñëîâèå íîðìèðîâêè:mXbk = 1(5.12)k=0Îïðåäåëåíèå 29.Ôóíêöèÿψn = −mXakk=0τun−k +mXbk f (tn−k , un−k )(5.13)k=0íàçûâàåòñÿ ïîãðåøíîñòüþ àïïðîêñèìàöèè ðàçíîñòíîãî ìåòîäà (5.10) íà ðåøåíèè çàäà÷è (5.1).Íàéä¼ì ïîðÿäîê àïïðîêñèìàöèè ïðè ðàçëè÷íûõ êîýôôèöèåíòàõÑ÷èòàåì, ÷òîuak , bk .îáëàäàåò íóæíîé ãëàäêîñòüþ.
Ðàçëîæèì å¼ ïî ôîðìóëåÒåéëîðà:un−k = u(tn − τ k) =pX(−kτ )l u(l) (tn )l!l=0f (tn − kτ, un−k ) = u0 (tn − kτ ) =p−1X(−kτ )l u(l+1) (tn )l!l=0ψn = −pm XXk=0 l=0p XmXak (−kτ )l u(l) (tn )+τl!p−1m XXk=0 l=0p XmXbk+ O(τ p )(−kτ )l u(l+1) (tn )+ O(τ p ) =l!ak (−kτ ) u (tn )(−kτ )l u(l+1) (tn )+bk+ O(τ p ) =τl!l!l=0 k=0l=1 k=0!p XmmXXak(−kτ )l−1 (l)=−u(tn ) +u (tn ) (−ak k + bk l) + O(τ p )τl!=−l (l)+ O(τ p+1 )k=0Íàëîæèì óñëîâèå íàl=1 k=0ak :mXk=0ak = 0(5.14)5.4. Ïîíÿòèå óñòîé÷èâîñòè ìíîãîøàãîâîãî ðàçíîñòíîãî ìåòîäàÄëÿ äîñòèæåíèÿ ïîðÿäêà àïïðîêñèìàöèèmXp85íåîáõîäèìî:k l−1 (ak k + bk l) = 0,l = 1, p(5.15)k=02m+2 íåèçâåñòíûå (a0 , . . . , am , b0 , .
. . , bm ). Óñëîâèÿp + 2 óðàâíåíèÿ. ×òîáû ñèñòåìà íå áûëà ïåðåîïðåäåë¼ííîé, íåîáõîäèìî p ≤ 2m.Ðàññìîòðèì óñëîâèå (5.15) ïðè l = 1: ìíîãîøàãîâ ìåòîäå(5.12),(5.14),(5.15) äàþòmX(ak k + bk ) = 0 ⇒k=0mXak k = −k=0b0 = 1 −a0 = −mXbk = −1k=0mXbkk=1mXakk=1Ìíîãîøàãîâûé (m-øàãîâûé) ìåòîä ïîçâîëÿåò ïîëó÷èòü ïîðÿäîê àïïðîêñèìàöèèp,åñëè âûïîëíåíû óñëîâèÿ:Pmb0 = 1 −P k=1 bkma0 = − k=1 akPmak k = −1 Pk=0ml−1(ak k + bk ) = 0,k=0 kl = 2, pÄîñòîèíñòâàìè ìíîãîøàãîâûõ ìåòîäîâ ÿâëÿþòñÿ ïðîñòîòà ôîðìóë èë¼ãêîñòü ïîëó÷åíèÿ âûñîêîãî ïîðÿäêà òî÷íîñòè. Íåäîñòàòêàìè ÿâëÿþòñÿíàëè÷èå ðàçãîííîãî ýòàïà è íåîáõîäèìîñòü ïîìíèòümçíà÷åíèé.Ïðèìåðîì ìíîãîøàãîâîãî ìåòîäà ÿâëÿåòñÿ ìåòîä Àäàìñà:mmXk=0k=0Xyn − yn+1=bk fn−k ,τ5.4bk = 1Ïîíÿòèå óñòîé÷èâîñòè ìíîãîøàãîâîãî ðàçíîñòíîãî ìåòîäàyn+1 = qyn ,Åñëè|q| > 1,n = 0, 1, .
. . , q ∈ Còî îøèáêà áóäåò íåîãðàíè÷åííî íàðàñòàòü è ðàçíîñòíûéìåòîä íåóñòîé÷èâ. Ìîæåò âîçíèêíóòü ïîãðåøíîñòüðÿäíîé ñåòêè èëè ïðè âû÷èñëåíèÿõ:yfn = yn = δ nyn+1 = qfyn = qyn + qδnqδn = δn+1Ïðè|q| > 1, δn → ∞n→∞δnèç-çà îêðóãëåíèÿ ðàç-Ãëàâà 5. Ìåòîäû ðåøåíèÿ ÎÄÓ è ñèñòåì ÎÄÓ86Ðàññìîòðèì ìîäåëüíóþ çàäà÷ó:u0 + λu(t) = 0,u(0) = u0t > 0, λ > 0(5.16)u(t) = u0 e−λt|u(t)| ≤ u(0)Òàêèì îáðàçîì, èìååò ìåñòî óñòîé÷èâîñòü ïî íà÷àëüíîìó óñëîâèþ.Ïîêàæåì, ÷òî åñëè ìû íåóäà÷íî âûáåðåì ñõåìó, òî îíà ìîæåò ñòàòüíåóñòîé÷èâîé.5.4.1ßâíàÿ ñõåìà Ýéëåðà yn+1 −yn= f (tn , yn )τy(0) = u0yn+1(5.17)yn+1 − yn+ λyn = 0τ= yn − τ λyn = (1 − τ λ)ynyn+1 = qyn ,q = 1 − τ,−1 ≤ 1 − τ λ ≤ 1,|q| ≤ 1τλ ≤ 2Òàêèì îáðàçîì, ñõåìà óñëîâíî óñòîé÷èâà ñ óñëîâèåì óñòîé÷èâîñòèτ≤0<2λ.5.4.2Íåÿâíàÿ ñõåìà Ýéëåðà yn+1 −yn= f (tn+1 , yn+1 )τy(0) = u0(5.18)Ýòî óðàâíåíèå â ñèëó íåëèíåéíîñòè íàäî ðåøàòü èòåðàöèîííûìè ìåòîäàìè (íàïðèìåð ìåòîäîì Íüþòîíà).Äëÿ çàäà÷è (5.16) îí áóäåò çàïèñàí òàê:yn+1 − yn+ λyn = 0τyn+1 + τ λyn+1 = yn(1 + τ λ)yn+1 = yn1yn+1 =yn1 + τλ1q=<11 + τλÒàêèì îáðàçîì, íåÿâíàÿ ñõåìà Ýéëåðà óñòîé÷èâà ïðè ëþáûõτ,è âûáîðïàðàìåòðà îáóñëàâëèâàåòñÿ òîëüêî òî÷íîñòüþ, íî íå óñòîé÷èâîñòüþ.5.4.
Ïîíÿòèå óñòîé÷èâîñòè ìíîãîøàãîâîãî ðàçíîñòíîãî ìåòîäà5.4.387Óñòîé÷èâîñòü îáùåãî m-øàãîâîãî ìåòîäàÐàññìîòðèì óñòîé÷èâîñòü ìåòîäà (5.10) íà ìîäåëüíîé çàäà÷å (5.16).îòy0 , y1 , . . . , ym−1τ. ðàçãîííûé ýòàï çàäàí,Pmk=0 bk= 1, ak , bkíå çàâèñÿòÂûïèñûâàåì ðàçíîñòíóþ ñõåìó:mXakk=0τyn−k +mXλbk yn−k = 0Íåêîòîðûå ÷àñòíûå ðåøåíèÿ (5.19) ìîæíî íàéòè â âèäåóðàâíåíèÿ íàqn−m(5.19)k=0yj = q j . Ïîäåëèìè ïîëó÷èì õàðàêòåðèñòè÷åñêîå óðàâíåíèåFm (q, τ ) =mX(ak + τ λbk )q m−k = 0(5.20)k=0Òàê êàê èññëåäîâàòü êîðíè ýòîãî óðàâíåíèÿ ñëîæíî è ðåøàåòñÿ àíàëèòè÷åñêè îíî î÷åíü ðåäêî, òî îáû÷íî ïîëàãàþòτ =0(ïðè ìàëîìτ ).Òîãäà ïî-ëó÷àþòñÿ ñëåäóþùèå óðàâíåíèå (òàêæå íàçûâàåìîå õàðàêòåðèñòè÷åñêèì):Fm (q, 0) =mXak q m−k = 0(5.21)k=0Îïðåäåëåíèå 30.âèþ(α),Ãîâîðÿò, ÷òî ðàçíîñòíàÿ ñõåìà (5.10) óäîâëåòâîðÿåò óñëî-åñëè âñå êîðíè õàðàêòåðèñòè÷åñêîãî óðàâíåíèÿ (5.21) ëåæàò âíóò-ðè èëè íà ãðàíèöå åäèíè÷íîãî êðóãà êîìïëåêñíîé ïëîñêîñòè, ïðè÷¼ì íàãðàíèöå åäèíè÷íîãî êðóãà íåò êðàòíûõ êîðíåé.Òåîðåìà 10.
Ïóñòü ðàçíîñòíàÿ ñõåìà(5.10) óäîâëåòâîðÿåò óñëîâèþ (α)è ïóñòü |fu0 | ≤ L, òîãäà ïðè 0 ≤ tn = nτ ≤ T , ãäå τ äîñòàòî÷íî ìàëî,èìååò ìåñòî îöåíêà:nX|yn − u(tn )| ≤ M τ |ψj | + max |yi − u(ti )|0≤i≤m−1j=mÃäå M = M (L, T ) > 0 íå çàâèñèò îò τ .ψ ïîãðåøíîñòü àïïðîêñèìàöèè íà ðåøåíèè,|yi − u(ti )| ïîãðåøíîñòüïðèáëèæåíèÿ íà÷àëüíûõ óñëîâèé (ðàçãîííîãî ýòàïà).|yn − un | → 0Çàìå÷àíèå.(α):ïðèn→∞Ìåòîäû Àäàìñà óñòîé÷èâû, òàê êàê óäîâëåòâîðÿþò óñëîâèþmXyn+1 − yn=bk fn−kτt=0Õàðàêòåðèñòè÷åñêîå óðàâíåíèå:Çàìå÷àíèå.Òàê êàêτq n − q n−1 = 0 ⇒ q = 1èçíà÷àëüíî ìàëî, íå ðàçäåëÿþò ïîíÿòèÿ àáñîëþòíîéè óñëîâíîé óñòîé÷èâîñòè.Ãëàâà 5. Ìåòîäû ðåøåíèÿ ÎÄÓ è ñèñòåì ÎÄÓ88Çàìå÷àíèå.Åñëè ñõåìà ÿâíàÿ, òî íàèâûñøèé ïîðÿäîê òî÷íîñòè óñòîé÷èâîãîìåòîäà íå ïðåâîñõîäèò•åñëèm.Åñëè ñõåìà íåÿâíàÿ, òî:m íå÷¼òíî, òî íàèâûñøèé ïîðÿäîê òî÷íîñòè óñòîé÷èâûõ ìåòîäîâm+1íå ïðåâîñõîäèò•åñëèm÷¼òíî, òî íàèâûñøèé ïîðÿä òî÷íîñòè óñòîé÷èâûõ ìåòîäîâ íåïðåâîñõîäèòm+2Ïðèìåð íåóñòîé÷èâîãî ìåòîäà:2fn−1 + fn−2yn + 4yn−1 − 5yn−2=τ3q 2 + 4q − 5 = 0q2 = −5q1 = 1|q2 | = 5 > 1,5.5ñëåäîâàòåëüíî óñëîâèå(α)íå âûïîëíÿåòñÿ.Ƽñòêèå ñèñòåìû îáûêíîâåííûõ äèôôåðåíöèàëüíûõ óðàâíåíèédu1u1 (0) = u1 0, tdt + a1 u1 (t) = 0,du2+au(t)=0,u2 (0) = u2 0, t22dta2 a1 (íà íåñêîëüêî ïîðÿäêîâ)>0>0(5.22)u1 (t) = u1 (0)e−a1 tu2 (t) = u2 (0)e−a2 tÒàê êàêa2 a1 ,òîu2 (t)óáûâàåò ãîðàçäî áûñòðåå, ÷åìÎáîçíà÷èì:u(t) =u1 (t).u1 (t)u2 (t)Ðàññìîòðèì ÿâíóþ ñõåìó Ýéëåðà:(y1n+1 −y1nτy2n+1 −y2nτ+ a1 y1n = 0+ a2 y2n = 0Ðàññìîòðèì ôèêñèðîâàííûé ìîìåíò âðåìåíèt∗ .