Н.И. Ионкин - Электронные лекции (2008) (1135232), страница 10
Текст из файла (страница 10)
Ïóñòü ðåøåíèå çàäà÷èðàçíîñòíàÿ ñõåìà (4.43) è èìååò ìåñòî îöåíêà:(4.44) (4.42) u(x1 , x2 ) ∈ C 4 (G). Òîãäàñõîäèòñÿ ñî âòîðûì ïîðÿäêîì ïî h1 è h2(4.41)ky − ukC(ωh ) ≤ M (h21 + h22 )ãäå M > 0 è íå çàâèñèò îò h1 è h2 .Çàìå÷àíèå.Ðàññìîòðèì çàäà÷ó:yx1 x1 ,ij + yx2 x2 ,ij = fij ,yij |Γh = 0Ïîëó÷èì àïðèîðíóþ îöåíêóxij ∈ ωhkykC ≤ M kf kC ,âîñòü ðàçíîñòíîé ñõåìû ïî ïðàâîé ÷àñòè.êîòîðàÿ îçíà÷àåò óñòîé÷è-Ãëàâà 4. Ðàçíîñòíûå ìåòîäû ðåøåíèÿ çàäà÷ ìàòåìàòè÷åñêîé ôèçèêè744.5Ìåòîäû ðåøåíèÿ ðàçíîñòíîé çàäà÷è ÄèðèõëåÐàçíîñòíàÿ ñõåìà â ïîêîîðäèíàòíîé çàïèñè (4.48) ÿâëÿåòñÿ ñèñòåìîé ëèíåé-N1 N2 . Ïðèìåíÿòü äëÿ å¼ ðåøåíèÿN1 , N2 ≈ 103 ñëîæíîñòü ìåòîäàíûõ àëãåáðàè÷åñêèõ óðàâíåíèé ïîðÿäêàìåòîä Ãàóññà íåýôôåêòèâíî, òàê êàê ïðèáóäåò ïîðÿäêà1012 .Íàèáîëåå ðàñïðîñòðàí¼ííûìè ìåòîäàìè ðåøåíèÿ ñèñòåìû (4.48) ÿâëÿþòñÿ èòåðàöèîííûå.Ïåðåïèøåì ñèñòåìó îòíîñèòåëüíî öåíòðàëüíîãî óçëà:22+ 22h1h2yij =yi+1,j + yi−1,jyi,j+1 + yi,j−1+− fij2h1h22Îáîçíà÷èì èòåðàöèþ ïîä íîìåðîì4.5.1s(s)(s)yi+1,j +yi−1,jh21.N = max(N1 , N2 )),(s)+(s)yi,j+1 +yi,j−1h22− fij(4.58)Äëÿ äîñòèæåíèÿ çàäàííîé òî÷íîñòè4.5.2(s)yijÌåòîä ßêîáè (s+1)22y=2 + h2h1 2 ij(s+1) yij = µijΓh (0)yij çàäàíî(ãäåε òðåáóåòñÿ n0 (ε) ≈ O(N 2 ) èòåðàöèé÷òî ñðàâíèìî ñ ðàçìåðàìè ìàòðèöû.Ìåòîä Çåéäåëÿ (s+1)22+=22 h1 h2 yij(s+1) yij = µijΓh (0)yij çàäàíî(s)(s)(s+1)yi+1,j +yi−1,jh21+(s+1)yi,j+1 +yi,j−1h22− fij(4.59)Ïîêàæåì, êàê íàõîäèòü ðåøåíèå:s + 1 èòåðàöèÿ.s èòåðàöèÿ.Äâèãàÿñü ïî ñòîëáöàì èç ëåâîãî íèæíåãî óãëà âïðàâûé âåðõíèé, ìîæåì ïîëó÷èòü ðåøåíèÿ â âèäåx2l2h2ÿâíûõ ôîðìóë.Ó ìåòîäà Çåéäåëÿ òàêàÿ æå ìåäëåííàÿ ñõîäèìîñòü, êàê è ó ìåòîäà ßêîáè.h1l1x14.5.
Ìåòîäû ðåøåíèÿ ðàçíîñòíîé çàäà÷è Äèðèõëå4.5.375Ïîïåðåìåííî-òðåóãîëüíûé èòåðàöèîííûé ìåòîäA = A∗ > 0Ay = φ,A = R1 + R20.5a11 ..R1 = . . ..0.5a11 0R2 = ... . ..000.5a22...ω > 0, τ > 0..aij.............0.5a22......00.........00.5amm...aij............0...0.....0(E + ωR1 )(E + ωR2 )Çäåñü...0.0.5ammy (s+1) − y (s)+ Ay (s) = φτ èòåðàöèîííûå ïàðàìåòðû,yij − yi−1,jyij+2h1yij − yi+1,jyij(R2 y)ij =+h21(R1 y)ij =y (0)(4.60)çàäàíî.− yi,j−1h22− yi,j+1h22y (s+1) − y (s)= w(s+1)τy (s+1) − y (s)= v (s+1)τ(E + ωR2 )w(s+1)âû÷èñëÿåòñÿ ïî ÿâíûì ôîðìóëàì, òàê êàê(E + ωR1 )- íèæíåòðå-óãîëüíàÿ.(E + ωR1 )w(s+1) = φ − Ay (s)(E + ωR2 )vyω > τ4 , ìåòîä) = O(N ).Ïðè−1O(h(s+1)(s+1)=y(s)=w+ τv(s+1)(s+1)(4.60) ñõîäèòñÿ, ïðè÷¼ì êîëè÷åñòâî èòåðàöèé(4.61)(4.62)(4.63)n0 (ε) = ñëó÷àå ïåðåìåííûõ êîýôôèöèåíòîâ èõ íàäî àïïðîêñèìèðîâàòü ñ òåìæå ïîðÿäêîì, ÷òî è ó óðàâíåíèÿ.
Íà êà÷åñòâî ðàçíîñòíûõ ñõåì îíè íå âëèÿþò.Ãëàâíîå:A = A∗ > 0.Ãëàâà 4. Ðàçíîñòíûå ìåòîäû ðåøåíèÿ çàäà÷ ìàòåìàòè÷åñêîé ôèçèêè764.6Îñíîâíûå ïîíÿòèÿ òåîðèè ðàçíîñòíûõ ñõåì.Àïïðîêñèìàöèÿ. Óñòîé÷èâîñòü. ÑõîäèìîñòüÐàññìîòðèì ïðîèçâîëüíóþ ëèíåéíóþ äèôôåðåíöèàëüíóþ çàäà÷ó:x∈GLu(x) = f (x),L- ëèíåéíûé îïåðàòîð,f, x(4.64)- âåêòîðà.Ìû ñ÷èòàåì, ÷òî íà÷àëüíûå è êðàåâûå óñëîâèÿ ó÷òåíû ëèáî âèäîì îïåðàòîðàL,ëèáî ïðàâîé ÷àñòüþ.Gh (h = max(h1 , h2 , .
. . ),Ââåä¼ì ñåòêóïðèh→0÷èñëî óçëîâ íåîãðàíè-÷åííî âîçðàñòàåò).yh (x)φh (x) ñåòî÷íàÿ ôóíêöèÿ, àïïðîêñèìàöèÿ ïðàâîé ÷àñòè,Lh yh (x) = φh (x),Lh L.x ∈ Ghx ∈ Ghx ∈ Gh(4.65)ðàçíîñòíàÿ àïïðîêñèìàöèÿ ëèíåéíîãî äèôôåðåíöèàëüíîãî îïåðà-òîðàÑëåäóåò ÷¼òêî ïîíèìàòü, ÷òî óñòîé÷èâîñòü è ñõîäèìîñòü îïðåäåëÿþòñÿâ êîíêðåòíîé íîðìå. Èç ñõîäèìîñòè â îäíîé íîðìå íå ñëåäóåò ñõîäèìîñòüäàæå â áîëåå ñëàáîé íîðìå.Ðàññìîòðèì íåïðåðûâíîå ëèíåéíîå íîðìèðîâàííîå ïðîñòðàíñòâîkuk0 íîðìà â ýòîì ïðîñòðàíñòâå.Ñîîòâåòñòâåííî Bh - äèñêðåòíîå íîðìèðîâàííîå ïðîñòðàíñòâîkykh , è yh (x) ∈ Bh .ïóñòüu(x) ∈ B0 ,B0èàÎïðåäåëåíèå 19.Íîðìû âB0è âBhñ íîðìîéñîãëàñîâàíû, åñëèlim kuh kh = kuk0h→0Åñëè íîðìû íå ñîãëàñîâàíû, òî ðåøåíèå ðàçíîñòíîé ñõåìû ìîæåò ñõîäèòüñÿ ê ðåøåíèþ, êîòîðîå íå ÿâëÿåòñÿ ðåøåíèåì èñõîäíîé çàäà÷è.Ph : B0 → Bh .u ∈ B0 : Ph u = uh ∈ BhÍàïðèìåð, ïóñòü G = {x : 0 ≤ x ≤ 1}.1Ñåòêà Gh = xi : xi = hi, i = 0, N , hN = 1, h =N > 0.Îïåðàòîð Ph u: uh (xi ) = u(xi ).xiÑåòî÷íîå ïðîñòðàíñòâî Bh = {y = (y0 , y1 , .
. . , yN )}.Ââåä¼ì îïåðàòîð ïðîåêòèðîâàíèÿÒàêèì îáðàçîì äëÿÐàññìîòðèì ïðèìåðû íîðì:1.kukC = max |u(x)| = kuk0 .x∈GÑîãëàñîâàííàÿ ñ íåé íîðìà âBh : kykC = max |yi | = kykh .i∈0,N2.kuk0 = kukL2 =R101/2u2 (x)dx.Ñîãëàñîâàííàÿ ñ íåé íîðìà âBh : kykh = kykL2 =PNi=01/2yi2 h.4.6. Îñíîâíûå ïîíÿòèÿ òåîðèè ðàçíîñòíûõ ñõåì3. Ïîêàæåì, ÷òî íîðìàâB0 .Ïóñòüu(x) ≡ 1.PNyi2i=01/277íå ñîãëàñîâàíà íè ñ îäíîé èç íîðìÒîãäà:NXkuh kh =!1/21=√N +1i=0lim kuh kh = ∞h→0Ââåä¼ì îïåðàòîð ïðîåöèðîâàíèÿ ñëåäóþùèì îáðàçîì:1(Ph u)i =hZxi +0.5hi = 1, N − 1u(x)dx,xi −0.5h(Ph u)0 =10.5h(Ph u)N =10.5hZ0.5hu(x)dx0Z 1u(x)dx1−0.5hzh (x) = yh (x) − uh (x), x ∈ GhÎïðåäåëåíèå 20.(4.66)Ñåòî÷íàÿ ôóíêöèÿ (4.66) íàçûâàåòñÿ ïîãðåøíîñòüþ ðàç-íîñòíîé ñõåìû (4.65).yh (x) = zh (x) + uh (x)Ïîäñòàâèìyhâ (4.65) è ïîëó÷èì çàäà÷ó äëÿ ïîãðåøíîñòè:Lh zh (x) = ψh (x),ãäåÎïðåäåëåíèå 21.(4.67)ψh (x) = φh (x) − Lh uh (x)(4.68)Ñåòî÷íàÿ ôóíêöèÿ (4.68) íàçûâàåòñÿ ïîãðåøíîñòüþ àï-ïðîêñèìàöèè ðàçíîñòíîé ñõåìû (4.65) íà ðåøåíèè èñõîäíîé çàäà÷è (4.64).Îïðåäåëåíèå 22.Ãîâîðÿò, ÷òî ðàçíîñòíàÿ ñõåìà (4.65) àïïðîêñèìèðóåòèñõîäíóþ çàäà÷ó (4.64), åñëèkψh kh → 0, h → 0Îïðåäåëåíèå 23.ñèìàöèèk,åñëèÃîâîðÿò, ÷òî ðàçíîñòíàÿ ñõåìà èìååò ïîðÿäîê àïïðîê-∃M1 > 0, k > 0,êîòîðûå íå çàâèñÿò îòhè èìååò ìåñòîîöåíêà:kψh kh ≤ M1 hkÎïðåäåëåíèå 24.Äèôôåðåíöèàëüíàÿ çàäà÷à (4.64) íàçûâàåòñÿ êîððåêòíîïîñòàâëåííîé, åñëè:• ∀f (x)ðåøåíèå ñóùåñòâóåò è åäèíñòâåííî;Ãëàâà 4.
Ðàçíîñòíûå ìåòîäû ðåøåíèÿ çàäà÷ ìàòåìàòè÷åñêîé ôèçèêè78•ðåøåíèå íåïðåðûâíî çàâèñèò îòÎïðåäåëåíèå 25.Ðàçíîñòíàÿ ñõåìà (4.65) íàçûâàåòñÿ êîððåêòíîé, åñëèïðè âñåõ äîñòàòî÷íî ìàëûõ• ∀φ(x)f (x).h:ðåøåíèå ñóùåñòâóåò è åäèíñòâåííî;• ∃M2 = const, M2 > 0, M2íå çàâèñèò îòh,òàêàÿ ÷òî:kyh kh ≤ M2 kψh kh(4.69)Îöåíêà (4.69) íàçûâàåòñÿ àïðèîðíîé îöåíêîé è îçíà÷àåò óñòîé÷èâîñòüðàçíîñòíîé ñõåìû.Çàìå÷àíèå.Ñëåâà è ñïðàâà íå îáÿçàòåëüíî îäèíàêîâûå íîðìû.Îïðåäåëåíèå 26.Ãîâîðÿò, ÷òî ðàçíîñòíàÿ ñõåìà ñõîäèòñÿ ê ðåøåíèþ èñ-õîäíîé çàäà÷è (4.64), åñëè:kzh kh = kyh − uh kh → 0, h → 0Îïðåäåëåíèå 27.k,åñëèÃîâîðÿò, ÷òî ðàçíîñòíàÿ ñõåìà èìååò ïîðÿäîê òî÷íîñòè∃M3 = const, M3 > 0, M3íå çàâèñèò îòh,÷òî:kzh kh ≤ M3 hkÒåîðåìà 9(òåîðåìà Ôèëèïïîâà).
Ïóñòü èñõîäíàÿ çàäà÷à (4.64) ïîñòàâëåíà êîððåêòíî è ïóñòü ðàçíîñòíàÿ ñõåìà (4.65) àïïðîêñèìèðóåò çàäà÷ó (4.64) è ÿâëÿåòñÿ êîððåêòíîé. Òîãäà ðåøåíèå ðàçíîñòíîé çàäà÷è (4.65)ñõîäèòñÿ ê ðåøåíèþ çàäà÷è (4.64), ïðè÷¼ì ïîðÿäîê òî÷íîñòè ðàçíîñòíîéñõåìû ñîâïàäàåò ñ ïîðÿäêîì àïïðîêñèìàöèè.Äîêàçàòåëüñòâî.Çàäà÷à ïîñòàâëåíà êîððåêòíî, ñëåäîâàòåëüíî:kyh kh ≤ M2 kφh kh , M2íå çàâèñèò îòhkzh kh ≤ M2 kψh khkψh kh ≤ M1 hk , M1híå çàâèñèò îòkk⇒ kzh kh ≤ M1 M2 h = M3 hãäåM3íå çàâèñèò îòhÇàìå÷àíèå (î ñîãëàñîâàííîñòè íîðì). Òåîðåìà 9 ãîâîðèò î òîì, ÷òî â B0 ∃u :kyh − uh kh → 0, íî èç íå¼ íå ñëåäóåò, ÷òî íå ñóùåñòâóåò äðóãîãî ýëåìåíòà vñ òåìè æå ñâîéñòâàìè. Äîïóñòèì, ÷òî îí ñóùåñòâóåò:kuh − vh kh = kuh − yh + yh − vh kh ≤ kuh − yh kh + kyh − vh kh → 0h→0Òîãäà, ïîëüçóÿñü ñîãëàñîâàííîñòüþ íîðì:lim kuh − vh kh = ku − vk0 = 0h→0Òàêèì îáðàçîì, â ñëó÷àå ñîãëàñîâàííîñòè íîðìðåøåíèþ çàäà÷è.yhñõîäèòñÿ èìåííî êÃëàâà 5Ìåòîäû ðåøåíèÿîáûêíîâåííûõäèôôåðåíöèàëüíûõóðàâíåíèé è ñèñòåì ÎÄÓ5.1ÂâåäåíèåÇàäà÷à Êîøè äëÿ îáûêíîâåííîãî äèôôåðåíöèàëüíîãî óðàâíåíèÿ:dudt= f (t, u(t)),u(0) = u0t>0u(t) = (u1 (t), u2 (t), .
. . , um (t))(5.1)TTf (t, u(t)) = (f1 (t, u), f2 (t, u), . . . , fm (t, u))Ïóñòü ôóíêöèÿfíåïðåðûâíà è óäîâëåòâîðÿåò óñëîâèþ Ëèïøèöà ïîâòîðîìó àðãóìåíòó:R = {|t| ≤ a, |u − u0 | ≤ b}f (t, u) ∈ C(R),|f (t, u) − (t, v)| ≤ L|u − v|∀(t, u), (t, v) ∈ RÒîãäà ðåøåíèå ìîæíî íàéòè ñëåäóþùèì îáðàçîì:Ztu(t) = u0 +f (x, u(x))dx0Z tun+1 (t) = u0 +f (x, un (x))dx, n = 0, 1, .
. .(5.2)0Ýòî íå ìîæåò áûòü ýôôåêòèâíûì ìåòîäîì ðåøåíèÿ çàäà÷è, òàê êàêèíòåãðàë íå âñåãäà ìîæíî ïîñ÷èòàòü àíàëèòè÷åñêè, äà è ñõîäèìîñòü áûëà79Ãëàâà 5. Ìåòîäû ðåøåíèÿ ÎÄÓ è ñèñòåì ÎÄÓ80áû ìåäëåííîé. Ïîýòîìó äëÿ ðåøåíèÿ ñèñòåì ÎÄÓ ïðèìåíÿþòñÿ ðàçíîñòíûåìåòîäû.Ââåä¼ì ñðåäíåêâàäðàòè÷íóþ íîðìó:|u| = u21 + u22 + · · · + u2m1/2Ââåä¼ì ïîñëåäîâàòåëüíîñòü:ωτ = {tn = nτ, n = 0, 1, . .
. } , τ > 05.1.1Ïðèìåðû ðàçíîñòíûõ ñõåì äëÿ èíòåãðèðîâàíèÿçàäà÷è Êîøèßâíàÿ ñõåìà ÝéëåðàÎáîçíà÷èìun = u(tn ), fn = f (tn , un ).Ñõåìà Ýéëåðà âûãëÿäèò ñëåäóþùèìîáðàçîì:yn+1 − yn= f (tn , yn ),τn = 0, 1, . . .Ââåä¼ì ïîãðåøíîñòü àïïðîêñèìàöèèy0 = u0(5.3)zn = yn − un .Ïîãðåøíîñòü àïïðîêñèìàöèè ðàçíîñòíîé ñõåìû (5.3) íà ðåøåíèè çàäà÷è(5.1):ψn = −un+1 − un+ f (tn , un )τ(5.4)Ðàçëîæèì å¼ ïî ôîðìóëå Òåéëîðà:un+1 − unτ= u0n + u00n + O(τ 2 )τ2τ 000ψn = −un + f (tn , un ) − un + O(τ 2 ) = O(τ )|{z} 2=0Òàêèì îáðàçîì, ñõåìà Ýéëåðà èìååò ïåðâûé ïîðÿäîê òî÷íîñòè.Ñõåìà Ðóíãå-Êóòòà (ïðåäèêòîðêîððåêòîð)Ââåä¼ì ïîëóöåëûé ñëîétn+ 12 = tn + 0.5τyn+ 1 −yny0 = u020.5τyn+1 −ynτ= f (tn , yn )= f (tn+ 21 , yn+ 12 )yn+1 − yn= f (tn+ 12 , yn + 0.5τ f (tn , yn ))τÝòà ñõåìà èìååò óæå âòîðîé ïîðÿäîê àïïðîêñèìàöèè.(5.5)5.2.