Главная » Просмотр файлов » Н.А. Слёзкин - Динамика вязкой несжимаемой жидкости

Н.А. Слёзкин - Динамика вязкой несжимаемой жидкости (1132339), страница 65

Файл №1132339 Н.А. Слёзкин - Динамика вязкой несжимаемой жидкости (Н.А. Слёзкин - Динамика вязкой несжимаемой жидкости) 65 страницаН.А. Слёзкин - Динамика вязкой несжимаемой жидкости (1132339) страница 652019-05-12СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 65)

дг де дт >стойчивость ллминленых течении — г+ -г+ — -"-"-+ --.- = О. дг г г дт дг Гели в рассматриваемом случае дополнительно предположить, что проекции вектора скорости поля возмущений и давление не будут зависеть от поляркото угла о до,. до до, др дч ' дт ' дт ' де — '=О, — — ==О, — -'==О, — =О, то из (2.!5) получим следу>ошие дифференциальные уравнения симметричного поля возмущений, наложенного на основное круговое движение вязкой несжимаемой жидкости: д> г В д>' (, > ' гт! до, 1др дт рдд (го,.) д (го„) дг д" + — =".= О, ('2. 16) тдс д'-' ! д дз дгз ' гдг ' д'' Приближш>ные дифференциальные уравнении (2.9), (2.14) и (2.16) соответственных полей возмущений использовались отдельными автора>>и для исследования устойчивости основных ламннарных течений вязкой несжимаемой жидкости.

Теперь перейдзм к установлению некоторых энергетических соотношений для поля возмущений. Обратимся к полным уравнениям поля возму>ценив (2.5). Умножая первые три уравнения на и', о' н ш' соответственно и складывая, При этих предположениях дифференциальные уравнения поля возмущений представятся в ниле > > дт„о, до, до,„огт>,ч —,, ~бо' т ( '.) (2.15) де+ г дт яда а 21 овщие телвнзиня для возмюценного движения 395 получим: Используя уравнение несжимаемости и выражения компонент вектора вихря, будем иметгн г г и' ди'+ о' ао'+ щ' Лщ' = г .— 2 — (о в' —.

юа',) + — (ю а' -- и'в') + + — (и'а' — о'а' )1 — 4 в', =-Й" (';: — ~- ")1+АИ'-а+ ~ ")1+Й-'6+1 "М Первые четыре слагаемых в левой части (2.17) в своеп совокупности представляют собой ииднвидуальнухз произ~годную по времени от кинетической энергии единицы массы в поле возмущений при условии, что переход частиц из одного положения в другое происходит со скоростью основного движения. Для этой производиои введем отдельное обозначение д д д д де дь ' 'дх 'ду 'дх ' — '= — + и — +о — +щ —. (2.18) Для всех последующих слагаемых левой части (2.17) также введем отдельное обозначение ,а диг, ду,,а да,, удиг де 'г г)4 = — 1и' — +о' — — + щ' — '+ и о ~ — + — )+ дх ду д- )ду дх 7 ' и'.-"'(й'-.'+'д — ')+"'о'(' — "+'— ")) (2 ") Г/г (э д- — д —,— д — д —— 2 2 2 2, мдиг,едег,гдвг — + и, = + о — + тп — + и — + ед" — .+ щ' — + дг дх г ду г дх дх ду дх + (а'Ьи'+о'Ло'+щ'Ьщ'), (2,17) уСТоичньоь~~ вви Используя обозначения (2.18) и (2.19) и предшествующие формулы преобразования, получим из (2,17) следующее энергетическое соотношение для единицы объЕма частиц жидкости в поле возмущений: — '(Р—,) = рМ вЂ” 4рв'+ — (и'(р'+ —, р(>' )+29(о'в' — -ш'в,')~+ + — (о'(р'+-,— р)г' )+2р(ш'в' — и'в'„))+ + — ~ш'(р'+ — р)г' )+ 29(и'в,' — и'в',)~.

(2.20) Для случая плоского поля возму>ценил будем иметь: ь„э — '( — ) = р Ч вЂ” 4йв' -à — ~и'(р' -1--,; э(г' )-4 21>п'в'~+. г> ~ при этом из (2.19) получим: ,э ди> с ди... Гди> ди,т) М = — (и'э — + о' — -(- иги ( — + — )(. дх ду )ду дх ) (2.21) (2.22) Если >ке основное течение будет плоским прямолинейно-параллельным, т. е.

д»> ю,—= . О, д — '=О, и, =- и,(у), то вь>ражение для М примет вид , ии> М =- — и'о —. ду (2.23) Допустим, что мо>хно выбрать такой конечный прямоугольник с площалью 5, на границах которого у = с, у = с( проекции вектора скорости поля возмущений обращаются в нуль, а на других границах х = а, х = д распределение скоростей, давлений и вихрей будет олинаковым. При этих условиях при интегрировании по >лощади рассматриваемого прямоугольника будем нметгн ~ — (и'(р'+ — р)>' )+ 2ро'в'~ г(хг(у = ~ ~и (Р + -2 р"" ) г-2ро™~ >(у = О, з=е ш'=— О, в'= — О, в' =О, в'=.в' х ' и и, следовательно, энергетическое соотношение (2,20) будет предсгавляться в виде й 2) озщиа уиляиання для аозмущйнного даижаиия 397 ~ ~ д [о' (р'+ — 71' ) — 2 и' '~дхду = и:.ь ~о'(р'+ —, р)l' ) — 2ри'м'~ дх =- О, и=а — — рР' с(х ду = р ~ ) М Нх игу — 4)ь ~ ) м' с(х игу.

(2.24) Полученное интегральное соотношение (2.24) представляет собой энергетическое соотношение для частиц жидкости внутри указанного прямоугольника в поле возмущений. Это соотношение показывает, что возрастание кинетической энергии поля возмущений может происходить только тогда, когда величина М будет заведомо положительной и прн этом такой, чтобы значение первого интеграла в правой части (2.24) превосходило значение второго интеграла. г4ля случая плоского прямолинейного течения, для которого Щ)О, дй величина М из (2.23) может быть полозкительной, если проекции вектора скорости поля возмущений будуг иметь разные знаки, т.

е и'о'( О. (2.25) В указанных в предшествующем параграфе статьях, в которых исследование устойчивости ламинарныл течений проводилось с помощью энергетического метода, в качестве допущения принималось, что возрастание со временем кинетической энергии поля возмущений может служить вполне достаточным признаком возникновения неустойчивости исследуемого ламинарного течения. Если принять это допущение, то дальнейшая задача исследования устойчивости прямолинейно-параллельного течения между параллельными стенками будет сводиться к подбору соответственного поля возмущений, удовлетворяющего неравенству (2,25), при котором правая часть равенства (2.24) обращалась бы в нуль и при этом число Рейнольдса исследуемого ламинарного течения принимало бы наименьшее значение. Приравнивая правую часть (2.24) к нулю и подставляя значение М из (2.23) н значение угловой скорости вихря, получим: ~и'и' — 'дхг(у+ ~ ~ ~ — — — ) улду=О.

(2.26) .!'. '' — ' диг ( Р Гди' ди'1г 6'у .),( (дх ду ) Если теперь перейти в равенстве (2.25) к безразмерн~м величинам, полагая х =- '— , у =- — "', и„= — (/((т), и' =. Ыр(Е г), о' = (/ф(Е ч)), Й = — „ устойчивость ллминлтных > знаний (гл. х> то для числа Рейнольлса получим следующее равенство: ) (ф — — ) А'дч К— (2.27) >" (ч] и (; —, ч) ф (-, ч) д( дч Таким образом, задача определения минимально~о значения числа Рейнольдса будет сводиться к опрелелению минимума отношения(2.27) лвух двойных интегралов. ф 3. Исследование устойчивости ламииарного течения с прямолинейным профилем распределения скоростей Пусть мы имеем дяе параллельные стенки на расстоянии Ь лруг от друга.

Если нижняя стенка будет неподвижной, а верхняя будет перемещаться параллельно самой себе со скоростью (У и если перепада давлений в направлении течения не будет, то для основного поля ламинарпого течения межлу параллельными стенками булем иметь прямолинейный профиль распределения скоростей по сечению, т. е. (г и,= ау, о>=0. (34) Вводя безразмерные независимые величины х у (У 0й — — — (х =- —, (3.3) представим дифференциальное уравнение (3.2) в зиле да(у дар — — + т> —.— = — Ь дб'. дт д! и (3.4) Далее, как уже указано в Я 1, функцию тока представим в виде >У = (Уйеын "'>у(г>).

(3.5) Тогла Ь)' = (>Лет>) -"П( — я-'У+ — 1= Еде'>1 -"Пр(т>), дт>л ) (3.6) Для исследования устойчивости данного ламинарного течения по л>етоду чалых колебаний мы должны обратиться к приближенному дифференциальному уравнению (2.9) для функции тока поля возмущений.

Подставляя в зто уравнение выражение (3.1) для продольной скорости, получим с.чедующее дифференциальное уравнение с частными производными четззртого порядка: д а>)' (У д лр' де Л- дл ь 31 тзчяниз с пгямолинейным пгоеилам глспгадалания скогоствй 399 и дифференциальное уравнение (3.4) запишется: — я+ф Яг(ат> — >3) — Я") =. О. ввт дг;-' (3.7) Таким образом, задача свелась к решению однородного дифференциального уравнения с обыкновенными производными второго порядка (3.7) и последующего решсння неоднородного обыкновенного дифференциального уравнения второго порядка — — — яву=у ггзэ' лф (3.8) Если ввести новое независимое комплексное переменное чз+ я(з — ач] (ч>1) Ь то дифференциальное уравнение (3.7) преобразуется: члч — +ау = О.

вчт (3.9) (3.10) Независимыми решениями этого уравнения будут ') цилиндрические функции с ннлексом '/з, т. е. ',= " 1,.~-3"'), *'Л„( —, а ') ° (3.11) Неоднородное дифференциальное уравнение (3,8) можно решить методом вариации произвольного постоянного. Почучим два независимых решения: ь= — ': ~ячэ ч*' — ч~*' ~ Гя — —., ~ е. (а ) 51п х (а — а)г)з, (3.12) где (3 Пз) т) Р ы ж н к, Г р а л ш т е й н, Таблицы интегралов, Гостехнзлат, 1951, стр 363, а нижний предел ао представляет собой пока неопределенную комплексную постоянную, Умножая (3.12) на произвольную постоянную и складывая с общим решением однородного > равнения (3.8), 4ОО тстойчивость ллминлвных тячвний (гл. х~ получим общее решение полного уравнения для У: У(т) == АУ, + ВУя+ Се"'+ )Эе-" .

(3.14) На основании (3.5) проекции вектора скорости поля возмущений будут представляться в виде дф' и' = — т- = (меч ьп "пу'(т), деу о' = — — '-- =-(и(Уеыач-"НУ(т)). дк (3.15) Граничные условия прилипания частиц жидкости к стенкам в поле возмущений будут тогда иметь вид — у'(О)=О, у(1).=О, у'(1)=О. (3.1о) В качестве гз в (3.12) возьмем значение г из (3.9), отвечающее нижней стенке (ч) = О), т. е, (3,1?) (и)ч)" Тогда прн значении г = ге функции У, и Ув из (3.12), а также и их первые производные будут обращаться в нуль. Поэтому первые два условия (3.16) прн подстановке выражения (3.14) дадут: С+О= О, и(С вЂ” О) = — О.

Характеристики

Тип файла
DJVU-файл
Размер
4,74 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6439
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее