И.А. Аптекарев, В.Н. Сорокин - Спектральная теория разностных операторов (1128570), страница 10
Текст из файла (страница 10)
®£¤ ¯®±«¥¤®¢ ²¥«¼®±²¼²®·¥ª < 'n; A'n >; ¯°¨ ¤«¥¦ ¹¨µ £° ´¨ª³ (A); ±µ®¤¨²±¿ª ²®·ª¥ < '; A' >; ² ª¦¥ ¯°¨ ¤«¥¦ ¹¥© £° ´¨ª³ (² ª ª ª¯® ³±«®¢¨¾ ®¯¥° ²®° § ¬ª³²»©). «¥¤®¢ ²¥«¼®,(A + i)'n ! (A + i)';£¤¥ ' 2 D(A); ·²® ¨ ®§ · ¥² § ¬ª³²®±²¼ ®¡° § .¥¬¬ ¤®ª § .
4 ¬ª³²»© ±¨¬¬¥²°¨·»© ®¯¥° ²®° ¿¢«¿¥²±¿ ± ¬®±®¯°¿¦¥»¬, ²®£¤ ¨ ²®«¼ª® ²®£¤ , ª®£¤ ¥£®¨¤¥ª±» ¤¥´¥ª² ° ¢» ³«¾ d = 0:¥°¥¬±¿ ª ¯°¨¬¥°³ ®¯¥° ²®° ª®¡¨. »·¨±«¨¬ ¥£® ¨¤¥ª±» ¤¥´¥ª² . ¥¸¨¬ ³° ¢¥¨¥«¥¤±²¢¨¥ 18AQ = z Q; z 2 C :118¥¸¥¨¥¬ (± ²®·®±²¼¾ ¤® ·¨±«®¢®£® ¬®¦¨²¥«¿) ¡³¤¥² ±²®«¡¥¶ ®°²®®°¬¨°®¢ »µ ¬®£®·«¥®¢. ®§¬®¦» ¤¢ ±«³· ¿. ¨¡® Q 2 l2 (±«³· © (C )); ²®£¤ ¨¤¥ª±» ¤¥´¥ª² ° ¢» ¥¤¨¨¶¥ d = 1: ¨¡® Q 62 l2 (±«³· © (D)); ²®£¤ ¨¤¥ª±»¤¥´¥ª² ° ¢» ³«¾ d = 0: ª¨¬ ®¡° §®¬, ¬¨ ¤®ª § ±«¥¤³¾¹ ¿ ± ¬®±®¯°¿¦¥»©, ²®£¤ ¥®°¥¬ 26 ¯¥° ²®° ª®¡¨ A¨ ²®«¼ª® ²®£¤ , ª®£¤ ±®®²¢¥²±²¢³¾¹ ¿ ¥¬³ ¯°®¡«¥¬ ¬®¬¥²®¢ ®¯°¥¤¥«¥ .1194. §®±²»¥ ®¯¥° ²®°» ¢²®°®£® ¯®°¿¤ª ¨ ¥¯°¥°»¢ ¿ ¤°®¡¼ ²¨«²¼¥± 4.1. °®¡¼ ²¨«²¼¥± ¨ ¥¥ ½ª¢¨¢ «¥²»¥ ´®°¬»¥¯°¥°»¢®© ¤°®¡¼¾ ²¨«²¼¥± ¥¯°¥°»¢³¾ ¤°®¡¼za01a1 §»¢ ¾² ±«¥¤³¾¹³¾(4:1)a2az 1 3 ®£¤ ¥¥ ² ª¦¥ § ¯¨±»¢ ¾² ¢ ¢¨¤¥1; (4:2)1c0z +1c1 + c z + 2£¤¥a0 = c1 ; ak = c c1 ; k = 1; 2; :::0k k 1°¨¨¬ ¿ ¢® ¢¨¬ ¨¥, ·²® · ±²® ¢ ¯°¨«®¦¥¨¿µ ·¥²»¥ ¨¥·¥²»¥ ª®½´´¨¶¨¥²» ¤°®¡¨ (4.2) ¨¬¥¾² ° §«¨·»© ±¬»±«,¤°®¡¼ (4.2) ² ª¦¥ § ¯¨±»¢ ¾² ¢ ¢¨¤¥1l0 +(4:3)1m1z +1l1 + m z + 2 ¥ª®²®°®¬ ±¬»±«¥ ¤°®¡¼ ²¨«²¼¥± ¤ ¥² ¡®«¥¥ ¯®«³¾ ¨´®°¬ ¶¨¾ ® ±²¥¯¥®¬ °¿¤¥, ·¥¬ ° ±±¬®²°¥ ¿ ° ¥¥ (±¬.120¯ ° £° ´ 1.5) ¥¯°¥°»¢ ¿ ¤°®¡¼ ¥¡»¸¥¢ -ª®¡¨.
®¿±¨¬ ½²® ±«¥¤³¾¹¨¬ ³²¢¥°¦¤¥¨¥¬.¥²»¥ ¯®¤µ®¤¿¹¨¥ ¥¯°¥°»¢®© ¤°®¡¨²¨«²¼¥± (4.1) ±®¢¯ ¤ ¾² ± ¯®¤µ®¤¿¹¨¬¨ ¥¯°¥°»¢®© ¤°®¡¨ ¥¡»¸¥¢ -ª®¡¨²¢¥°¦¤¥¨¥ 24A0z B0£¤¥(4:4)A1Az B1 z B 2 2A0 = a0;B0 = a1;An = a2na2n 1; n = 1; 2; :::Bn = a2n + a2n+1; n = 1; 2; ::: (4:5)®ª § ²¥«¼±²¢®. ¡®§ ·¨¬atk [w] = 2k 1a2k1z w«¥¬¥² °»¥ ¯°¥®¡° §®¢ ¨¿ ¤ ¾²tk [w] = a2k 1 + z a2kaa2k 1 w : (4:6)2k¥²»¥ ¯®¤µ®¤¿¹¨¥ ¥¯°¥°»¢®© ¤°®¡¨ ²¨«²¼¥± (4.1) ¬®¦® § ¯¨± ²¼ ª ªP2n(z ) =a0Q2n(z ) z t1 t2 :::tn 1 [ a n1 ] ;21211·²® ± ³·¥²®¬ (4.6) ¬®¦® ¯¥°¥¨± ²¼ ª ªa0P2n(z ) =:Q2n(z )a1a2z a1a3a4z a2 a3a2n 3a2n 2z a4 a5 :::az a2n 2 21n 1²¢¥°¦¤¥¨¥ ¤®ª § ®.
4¢¨¤³ ²¢¥°¦¤¥¨¿ 8 ¯ ° £° ´ 1.5, ·¥²»¥ ¯®¤µ®¤¿¹¨¥ ¥¯°¥°»¢®© ¤°®¡¨ ²¨«²¼¥± «¥¤±²¢¨¥ 19a0z1a1a2 S (z ) = sz0 + zs12 + :::az 13(4:7)¿¢«¿¾²±¿ ¤¨ £® «¼»¬¨ ¯¯°®ª±¨¬ ¶¨¿¬¨ ¤¥ (° ±±¬®²°¥»¬¨ ¢ ¯ ° £° ´¥ 1.1) ¤«¿ ±²¥¯¥®£® °¿¤ S (z ):²¬¥²¨¬, ·²® ¯°¥®¡° §®¢ ¨¿ ²¨«²¼¥± (4.5) ¢ «¨²¥° ²³°¥ ¯® ¬ ²¥¬ ²¨·¥±ª®© ´¨§¨ª¥ ² ª¦¥ §»¢ ¾² ¯°¥®¡° §®¢ ¨¿¬¨ ¨³°».1224.2. ¥ª³°°¥²»¥ ±®®²®¸¥¨¿ ¨ ° §®±²»¥§ ¤ ·¨, ±¢¿§ »¥ ± ¤°®¡¼¾ ²¨«²¼¥± ¡¹¥¥ ²¢¥°¦¤¥¨¥ 7 ¯ ° £° ´ 1.5 ¤ ¥² ²°¥µ·«¥»¥ °¥ª³°°¥²»¥ ±®®²®¸¥¨¿, ±¢¿§»¢ ¾¹¨¥ ¯®«¨®¬» § ¬¥ ²¥«¨ ¯®¤µ®¤¿¹¨µ ¤°®¡¥© (4.1) ¨ (4.4).
¥ ¦¥ °¥ª³°°¥²»¥±®®²®¸¥¨¿ ¯°¨ ¤°³£¨µ · «¼»µ ¤ »µ ² ª¦¥ ±¢¿§»¢ ¾² ·¨±«¨²¥«¨ ¯®¤µ®¤¿¹¨µ ¤°®¡¥©. «¿ ¤°®¡¨ (4.1) ¨¬¥¥¬Yn+1(z ) = "n Yn(z ) anYn 1(z ); n = 1; 2; :::;(4:8)£¤¥ "n = z ¤«¿ ·¥²»µ n ¨ "n = 1 ¤«¿ ¥·¥²»µ n: ®£¤ ¤«¿n © ¯®¤µ®¤¿¹¥© Pn=Qn ¥¯°¥°»¢®© ¤°®¡¨ (4.1) ±¯° ¢¥¤«¨¢® (¤«¿ n = 0; 1; :::)Pn = Yn;P0 = Y0 = 0; P1 = Y1 = a0;Qn = Yn;Q0 = Y0 = 1; Q1 = Y1 = z:°¨ ½²®¬deg Q2n = n; deg Q2n 1 = n; deg Pn = deg Qn 1: «®£¨·®, °¥ª³°°¥²»¥ ±®®²®¸¥¨¿, § ¤ ¢ ¥¬»¥ ¤°®¡¼¾ (4.4), ¨¬¥¾² ¢¨¤Y~n+1(z ) = (z Bn )Y~n(z ) AnY~n 1(z ); n = 1; 2; :::;(4:9)£¤¥ An; Bn § ¤ ¾²±¿ ±®®²®¸¥¨¿¬¨ ²¨«²¼¥± (4.5). ®½²®¬³ ¤«¿ n = 0; 1; 2; ::: ¨¬¥¥¬P2n = Y~n;P0 = Y~0 := 0; P2 = Y~1 := A0 = a0;Q2n = Y~n; Q0 = Y~0 := 1; Q2 = Y~1 := z B0 = z a1:¥ª³°°¥²»¥ ±®®²®¸¥¨¿ (4.8) ¨ (4.9) § ¤ ¾² ° §®±²³¾§ ¤ ·³ ¢²®°®£® ¯®°¿¤ª .
®¡®§ ·¥¨¿µ ¤°®¡¨ (4.3) ¯°¨¢¥¤¥¬ ½ª¢¨¢ «¥²³¾ ±¨±²¥¬³ ° §®±²»µ ³° ¢¥¨© ¯¥°¢®£®¯®°¿¤ª .123²¢¥°¦¤¥¨¥ 25 (°¥©)°¿¾² ±¨±²¥¬¥³±²¼ (z ) ¨ (z ) ³¤®¢«¥²¢®-(n+1 n = ln nn+1 n = mn+1zn+1;n = 1; 2; 3; :::(4:10)®£¤ ¤«¿ ¯®¤µ®¤¿¹¨µ QPnn ¥¯°¥°»¢®© ¤°®¡¨ ²¨«²¼¥± (4.1) (²¥ ¦¥ ¯®¤µ®¤¿¹¨¥ ¨¬¥¾² ½ª¢¨¢ «¥²»¥ ¤°®¡¨ (4.2)¨ (4.3) ¯°¨ ±®®²¢¥²±²¢³¾¹¨µ § ¬¥ µ fang $ fcng $ fln; mn g);±¯° ¢¥¤«¨¢®Q2n+1 = n;Q2n = n;n = 0; 1; :::;n = 1; 2; :::;0 = 1;1 = m1z;±®®²¢¥²±²¢³¾¹¨¥ ·¨±«¨²¥«¨ ¯®«³· ¾²±¿ ¯°¨0 = l0; 1 = 1 + l0 m1z:®ª ¦¨²¥ ½²® ³²¢¥°¦¤¥¨¥. ±±¬®²°¨¬ ¤°³£®© ° §®±²»© ®¯¥° ²®°, ±¢¿§ »© ± ¤°®¡¼¾ ²¨«²¼¥± (4.1).
³±²¼ ®¯¥° ²®° A; ¤¥©±²¢³¾¹¨© ¢ l2;§ ¤ ¥²±¿ ¢ ±² ¤ °²®¬ ¡ §¨±¥ fek g :¯° ¦¥¨¥ 10:= (0; ::; 0; 1; 0; :::); k = 0; 1; 2; :::± ¯®¬®¹¼¾ ¡¥±ª®¥·®© ¬ ²°¨¶»20 136a1 0 177A := 64 a2 0 1 5::: ::: :::«¿ ½²®£® ®¯¥° ²®° ° ±±¬®²°¨¬ °¥§®«¼¢¥²³¾ ´³ª¶¨¾11X(Ake0; e0) Xfk :1f (z ) := ((z I A) e0; e0) ==:k+1zz k+1k=0k=0ek124«¿ ±¯¥ª²° «¼»µ ¤ »µ f (z ); ffk g1k=0®¯¥° ²®° A ±¯° ¢¥¤«¨¢®f (z ) = zS (z 2)f2k = sk ; f2k+1 = 0; k = 0; 1; 2; ::: (4:11)£¤¥ S (z ) ±²¥¯¥®© °¿¤, ¯°¥¤±² ¢«¿¾¹¨© ¤°®¡¼ ²¨«²¼¥± (4.7).®ª § ²¥«¼±²¢®.
¤¥« ¥¬ ¢ ¤°®¡¨ ²¨«²¼¥± S (~z ) § ¬¥³2z~ = z ¨ ° ±±¬®²°¨¬²¢¥°¦¤¥¨¥ 26zS (z 2) = za0z21a1a2az 2 1 3 ¬®¦¥¨¥ ¨ ¤¥«¥¨¥ ª ¦¤®£® ½² ¦ ½²®© ¥¯°¥°»¢®© ¤°®¡¨ z ¤ ¥²a0zS (z 2) =a1zaz z 2 ¬¥· ¿, ·²® ¢ ¯° ¢®© · ±²¨ ±²®¨² ¥¯°¥°»¢ ¿ ¤°®¡¼, ±®®²¢¥²±²¢³¾¹ ¿ °¥§®«¼¢¥²®© ´³ª¶¨¨ ®¯¥° ²®° A (±¬. ¯ ° £° ´ 1.6), ¯®«³· ¥¬ ±¯° ¢¥¤«¨¢®±²¼ ¯¥°¢®£® ±®®²®¸¥¨¿¢ (4.11). ¯° ¢¥¤«¨¢®±²¼ ¢²®°®£® ±®®²®¸¥¨¿ ¢ (4.11) ±° §³¦¥ ¢»²¥ª ¥² ¨§ ¯¥°¢®£® ±®®²®¸¥¨¿, ¥±«¨ ¯°¨° ¢¿²¼ ª®½´´¨¶¨¥²» ±²¥¯¥»µ °¿¤®¢, ±²®¿¹¨µ ¢ ®¡¥¨µ · ±²¿µ ° ¢¥±²¢ .
4 ª¨¬ ®¡° §®¬, ª ±¯¥ª²° «¼»¬ ¤ »¬ ®¯¥° ²®° A ¬»² ª¦¥ ¬®¦¥¬ ®²®±¨²¼ ±²¥¯¥®© °¿¤ S (z ) ¨ ¥£® ª®½´´¨¶¨¥²» fsk g: » ¨µ ¡³¤¥¬ §»¢ ²¼ ±²¨«²¼¥±®¢±ª¨¬¨ ±¯¥ª²° «¼»¬¨ ¤ »¬¨ ®¯¥° ²®° A:1254.3. ¥¸¥¨¥ ¯°¿¬®© § ¤ ·¨¤«¿ ±¯¥ª²° «¼»µ ¤ »µ ²¨«²¼¥± ¥¸¥¨¥ ¯°¿¬®© § ¤ ·¨fak g ! fsk g¤ ¥²±¿ ±«¥¤³¾¹¥© ´®°¬³«®©.¥®°¥¬ 27 ±«¨ ±²¥¯¥®© °¿¤1Xk; s0 = 1;S (z ) = zsk+1k=0° §« £ ¥²±¿ ¢ ¤°®¡¼ ²¨«²¼¥± a0S (z ) =a1za21z ²®sk = a1jX+12Xj2 =1aj22j3 =1aj :::Xjk 1 +13jk =1ajk ; k = 1; 2; :::(4:12)®ª § ²¥«¼±²¢³ ²¥®°¥¬» ¯°¥¤¯®¸«¥¬ ±«¥¤³¾¹³¾ «¥¬¬³.(1)¥¬¬ 7 ³±²¼ sk ®¯°¥¤¥«¥» ª ª (4.12), sk ¥±²¼jX+13X(1)sk = a2 ajajj =2 j =23433:::4®£¤ sk+1 = a1Xjk +1jk+1 =2kX =0ajk ; k = 1; 2; :::+1s(1) sk :126(4:14)(4:13)®ª § ²¥«¼±²¢® «¥¬¬».sk+1 = a1 sk +a2a1 Xi +13X:::+ a2i2 =2ai22i3 =22Xaj :::3j3=1ip 1 +1ai :::3 ±¯¨±»¢ ¿ (4.12) ¤«¿ sk+1 ¨¬¥¥¬Xjk 1 +1ajk +a2(a2+a3)a1jk =12X Xip =2aipa1jp+2 =1ajp :::+22Xj4=1jk 1 +1Xjk =1aj :::Xjk 1 +14jk =1 !ajk +::: ;·²® ± ³·¥²®¬ ®¡®§ ·¥¨¿ (4.13) ¤ ¥² (4.14).¥¬¬ ¤®ª § .
4®ª § ²¥«¼±²¢® ²¥®°¥¬». ±±¬®²°¨¬ ±²¥¯¥»¥ °¿¤»:11 (1)XXsk(1)S (z ) = z k+1 ¨ S (z ) = zskk+1 ;s0 = s(1)0 = 1:k=0k=0¥¬¬ ± ³·¥²®¬ ¯° ¢¨« ³¬®¦¥¨¿ ±²¥¯¥»µ °¿¤®¢ ¤ ¥²:S (z ) z1 = a1S (z )S (1)(z ):²ª³¤ S (z ) = z za1S (1)(z ) : (4:15)1¡®§ ·¨¬s(l) = akl+1l+2Xjl+2 =l+1¨® «¥¬¬¥ ¨¬¥¥¬Xajljl+2 +1+2jl+3 =l+1ajl :::+3Xjk+l 1 +1jk+l =l+11 (l )X(l)S (z ) = zskk+1 ;k=0ajk l ; k = 0; 1; 2; :::+s(0l) = 1:S (l) (z ) = z za 1S (l+1) (z ) :l+1127ajk +:::²¥° ²¨¢® ¯®¤±² ¢«¿¿ ½²³ ´®°¬³«³ ¢ (4.15) ¯®«³· ¥¬ ¤«¿S (z ) ° §«®¦¥¨¥ ¢ ¤°®¡¼ ²¨«²¼¥± ± ª®½´´¨¶¨¥² ¬¨ fak g :1=S (z ) =z a1z z za 1S (z)2=1za1=a21z za3S (3)(2)1z1a1:a2az 1 3 ¥®°¥¬ ¤®ª § .
4·¨²»¢ ¿ ±²°³ª²³°³ ±³¬¬ ¢ ¯° ¢®© · ±²¨ (4.12) ¬» ¡³¤¥¬¨µ §»¢ ²¼ £¥¥²¨·¥±ª¨¬¨ ±³¬¬ ¬¨.1284.4. »·¨±«¥¨¥ ®¯°¥¤¥«¨²¥«¥© ª¥«¿¨ °¥¸¥¨¥ ®¡° ²®© § ¤ ·¨¤«¿ ±¯¥ª²° «¼»µ ¤ »µ ²¨«²¼¥± ±«¨ ®¯°¥¤¥«¨²¥«¼ ª¥«¿ ±®±²®¨² ¨§ ¬®¬¥²®¢, § ¤ ¢ ¥¬»µ £¥¥²¨·¥±ª¨¬¨ ±³¬¬ ¬¨ (4.12), ²® ® «¥£ª® ¬®¦¥² ¡»²¼¯°¨¢¥¤¥ ª ²°¥³£®«¼®¬³ ¢¨¤³. °®¨««¾±²°¨°³¥¬ ½²® ¯°¨¬¥°¥ ®¯°¥¤¥«¨²¥«¿ 3-£® ¯®°¿¤ª :s s s 0 1 2H3 = s1 s2 s3 =s2 s3 s4P1+1 a1aa11 j =1 jPPP1+11+1j+1a1 j =1 aja1 j =1 aj j =1 aj= a1 PPPPPP1+11+1j+11+1j+1j+1a1 j =1 aj a1 j =1 aj j =1 aj a1 j =1 aj j =1 aj j =1 aj 222222222222332322333»®±¿ ¨§ ¯®±«¥¤¥© ±²°®ª¨ a1; ¢»·¨² ¿ ¨§ ¥¥ ¯°¥¤¯®±«¥¤¾¾ ±²°®ª³ ¨ § ²¥¬ ¢»®±¿ ¨§ ¯®±«¥¤¥© ¯®«³·¥®© ±²°®ª¨a2; ¨§ ¯°¥¤¯®±«¥¤¥© ±²°®ª¨ a1; ¯®«³·¨¬P1+1 a 1aa11 j =1 jPPPH3 = a21a2 1 2j =1 aj 2j =1 aj jj +1=1 aj PPP23j+11 j =1 aj j =1 aj j =1 aj 2222222223333312943344»·¨² ¿ ¨§ 3-© ±²°®ª¨ ¢²®°³¾, ¨§ 2-© ±²°®ª¨ ¯¥°¢³¾, ¯°®¤®«¦¨¬P1+1 a 1aa 1 1 j =1 j P2+12H3 = a1a2 0 a2 a2 j =1 aj P3+10 a3 a3 j =1 aj 223344»®±¿ ¨§ 3-© ±²°®ª¨ a3; ¨§ 2-© ±²°®ª¨ a2 ¨ ¢»·¨² ¿ ¨§ ¯®«³·¥®© 3-© ±²°®ª¨ ¢²®°³¾, ¡³¤¥¬ ¨¬¥²¼P21 a1 a1 j =1 aj 2 2P322H3 = a1a2a3 0 1j =1 aj = a1 a2 a3a4 :0 0a4 2233°¨¬¥¿¿ «®£¨·»¥ ° ±±³¦¤¥¨¿ ª ®¯°¥¤¥«¨²¥«¾ ¯°®¨§¢®«¼®£® ¯®°¿¤ª ¯®«³· ¥¬:Hn+1 = (a1a2)n(a3a4)n 1:::(a2n 3a2n 2)2(a2n 1a2n); n = 0; 1; ::: ª¨¬ ¦¥ ®¡° §®¬ ª ²°¥³£®«¼®¬³ ¢¨¤³ ¯°¨¢®¤¿²±¿ ®¯°¥¤¥«¨²¥«¨ s s : : : s s1 s2 : : : s n H~ n = : :2: : :3: : : : :n:+1: sn sn+1 : : : s2n 1¬¥¥¬H~ 1 = a1; H~ 2 = a21a2a3; H~ 3 = a31a22a23a4a5; :::H~ n = an1 (a2a3)n 1:::(a2n 2a2n 1):130² ª, °¥ª³°°¥²»¥ ´®°¬³«» ¤«¿ ®¯°¥¤¥«¨²¥«¥© Hn ¨ H~ nHn+1 = a1a2a3:::a2nHn; H1 = 1H~ n+1 = a1a2a3:::a2n+1H~ n ; H~ 0 = 1¤ ¾² °¥¸¥¨¥ ®¡° ²®© § ¤ ·¨fsng ! fak g:¯° ¢¥¤«¨¢ ¥®°¥¬ 28 ®½´´¨¶¨¥²» ¥¯°¥°»¢®© ¤°®¡¨ ²¨«²¼¥± ¢»° ¦ ¾²±¿ ·¥°¥§ ª®½´´¨¶¨¥²» ¥¥ ±²¥¯¥®£® °¿¤ ¯® ´®°¬³« ¬:~a2n = Hn+1 H~ n 1 ;Hn Hn~a2n 1 = H~n 1 Hn 1 ; n = 1; 2; ::: (4:16)Hn 2 Hn²¬¥²¨¬, ·²® ¨±¯®«¼§³¿ ¨±·¨±«¥¨¥ £¥¥²¨·¥±ª¨µ ±³¬¬ ¬®¦® ¥ ²®«¼ª® ¢»·¨±«¨²¼ ®¯°¥¤¥«¨²¥«¨ ª¥«¿, ® ¨ ¤ ²¼´®°¬³«» ¤«¿ ¬¨®°®¢ ¨µ ¯®±«¥¤¥£® ±²®«¡¶ .¯° ¦¥¨¥ 11 ³±²¼t[m; n] :=mXj1 =1Xajm+11j2 =j1 +1aj :::2Xm+n 1jn =jn 1+1ajn :®ª ¦¨²¥, ·²®1) s2n =nXk=1( 1)k 1 s2n k t[2(n k + 1); 2k]2) t[m; n] = t[m 1; n] + am+2(n 1) t[m; n 1]3) s2n =2nYj =1aj +nXk=1( 1)k 1s2n k t[2(n k) + 1; 2k]131¯° ¦¥¨¥ 12³±²¼ s0 : : :sHn;k := sn k 1 n k+1 : : :sn::::::::::::::::::s2n k 2 ; k = 0; :::; ns2n k : : : s2n 1 sn 1:::®ª ¦¨²¥, ·²®Hn+1 = a1a2:::a2nHnHn;k = t[2(n k) + 1; 2k]Hn 2 :1321:5.