Ф.П. Васильев - Методы решения экстремальных задач (1125244), страница 27
Текст из файла (страница 27)
ос=о+! При сделанных выше предположениях относительно исходных функций !р!, д', )! можно показать, что для остаточного члена формулы (13) справедлива оценка 1Р~ ~Со!)о7н=Со Мой.,+ ~1!А„+()!ой,), (14) С, = сопз1 ) О, которая вытекает из оценки 11511 о! / т 'Я~ ацр ()Лх!(а, 1)~оШ+~~)Ьх!(а, 1)~ой!(1~-)- ю-! о~ ~!о е о ( + У ~ 5нр ~ ( Лх'(я, 1) ~ й+) ~ ~ с!х'($! 1) (ойй) +! о<!~то е а С1 1)! (й, С, = сопз1 ~ О. 151 Из формулы (13) и оценки (14) следует, что функция (1) дифференцируема иа Н и ее градиент равен ,('(и) =(Н„(х(з, 1, и), и,(з, 1), з, 1, ф(з, 1, и)); гр„',(х'(1, 1, и), ..., х'"(1, 1, и), ит(1), 1)+ т + ~ ([!!(О, 1, и) ср! (и, (1), 1); ! ! я„", (х "(з, Т, и), ..., х" (з, Т, и), из (з), з)+ л + ~ 














