Главная » Просмотр файлов » А.К. Боярчук - Функции комплексного переменного - теория и практика

А.К. Боярчук - Функции комплексного переменного - теория и практика (1118159), страница 16

Файл №1118159 А.К. Боярчук - Функции комплексного переменного - теория и практика (А.К. Боярчук - Функции комплексного переменного - теория и практика) 16 страницаА.К. Боярчук - Функции комплексного переменного - теория и практика (1118159) страница 162019-05-09СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 16)

е. (чге > 0) (Би, Е (чО('в(п > и„р Е Щ) г р(л„ьр, л ) = !льне — »„! < г (3) (см. определение фундаментальной последовательности в п. 3.1, гл. 1). Поскольку метрическое пространство (И, р), где р(*, у) = !я — у! тг(к Е К, у Е К), полное, то в сиду теоремы 1 полным является и метрическое пространство (С р), где р(л„лг) = 1»т — л,! У(лг Е С, лг Е С) Теорема 4. Пусть последовательность (л„) сходится и» = йт л„.

Тогда любая ее нодпоследовательность (л„„) также сходится и Ит л„„= л. ь- Достаточность. Пусть Ке»„Кел, !тл„!тл. Тогда !»„— л!т = (К廄— Кел) + 2 1(тл„— )тл) 0 при и оо, т.е. л„-чл. и Таким образом, сходимость последовательности (»„) комплексных чисел равносильна сходимости двух последовательностей действительных чисел (Ке »„) и (1гл »„). Это позволяет перенести всю теорию пределов последовательностей действительных чисел на последовательности комплексных чисея.

В частности, из ограниченности последовательностей (Ке л„) и (1тл„) немедленно следует ограниченность последовательности (л„). Сформулируем теоремы для последовательностей комплексных чисел, которые следуют из теорем для последовательностей действительных чисел. Теорема 2. Пусть (л„) и ((„) — сходящиеся последовательности колггмексных чисел.

Тогда их сумма (» +(„), произведение (л„, („) и частное (-*к) (нри усговии, что зги Е 14 („~ О л 1!т ф„а О) также являются сходящимися последовательности и и ври этом б 2. Тополопи комплексной плоскости Теарема 5 (Больцано — Вейерштрасса). Всякое бесконечное ограниченное мназкестаа Я С С имеет хотя бы одну предельную точку а С.

м Пусть (х„) — произвольная последовательность точек множества Я, Она ограничена, поскольку мно:кество Я ограниченное. Тогда и последовательности (Ке х„), (1ш а„) ограничены. Согласно теореме Больцано — Вейерштрасса для последовательнее;ей действительных члсея, из последовательности (Ке х„) можно выделить сходящуюся подпоследовательность (Ке г „). Пусть !цп Кех„, = х, х Е К.

Рассмотрим подпоследоаательность (1шг„ь). Она ограничена, поэтому низ нее можно выделить сходящуюся подпоследовательность (1ш г„ь ). Пусть !пп !шхьц = у, у Е К. В силу теоремы 4 Кех, х при гп — + оо. Рассмотрим подпоследовательность (г„, ) последовательности (г„). По теореме 1 !цп ггц = з = яд(у, ° Е С. Согласно определению 4, и. 3.5, гл. 1, г является предельной точкой мнохсества Я. м Определевие 3. Тачка х Е С (г Е С) называется частичным пределом паследааатеяьнасти (х„) ияи ег предельной тачкой, если из нее манена аыдвгить падпагледааатеяьнаппь (г„,), предел катарин равен х.

Из теоремы 4 получаем следствие: если последовательность (г„) сходится и точка г б С— ее частичный предел, то 1нп г„= .. Следует различать предельные точки множеств и последовательностей. Например, последовательность (гн), где „= (-1)" имеет две предельные точки: г~ = -1 и, = 1, а конечное множество (-1, 1) предельных точек не имеет.

2.4. Свойства компакта К С С. Все необходимые определения и результаты, относящиеся к свойствам компактных множеств в метрических пространствах, излохсены в б 4, гл. 1, Рассмотрим свойства компакта в метрическом пространстве (С„р). Определение 1. Пусть К С С Множество К назыааетгя компактным а себе ияи компактам, если из любой последовательности (з„) точек г„Е К милена выбрать падпасгедааатгюность (г„), стаднигуюся к ненагпарай тачке гг Е К (см. определение 1, б 4, гл.

1). Теорема 1 (об ограниченности компакта). Каждый компакт К С С явяяетгя ограниченным множествам. < Пусть, вопреки утверждению, компакт К не ограничен. Тогда существует такая по ледовательносзь (г„), что ) „( > и и Хсп Е сИ г„б К. Из (г„) нельзя выбрать ограниченную подпоследовательность и, тем более, сходящуюся. Получили противоречие, источник которого в предположении, что компакт К не осраннчен.м Заметим, что согласно теореме Хаусдорфа компакт К С С вполне ограничен в метрическом пространстве (С, р), т.е.

тг > 0 для него имеется в С конечная г-сеть, Поскольку метрическое пространство (С, р) полное, то по теореме срреше каждое вполне ограниченное в нем множество компактно. Следует также отметить, что не всякое ограниченное множество Я С С является компактом. Например, множество Я = (г Е С: (г~ ( 1) ограниченное, но не компактное а себе, поскольку любая подпоследовательность последовательности (х„= — ", ) его точек сходится к 1 б Я.

Аналогично, если множество Я С С имеет предельную точку гр !( Я, то оно не является компактом. Теорема 2 (критерий компактности в себе), Мналгестна Я С С яаяяетгя компактом тогда и только тогда, когда ана одновременно замкнуто и ограничена. < Необходимость. Пусть Я вЂ” компакт. Согласно теореме 1 множество Я ограничено. Допустим, чю оно не замкнуто.

Тогда существуют такая точка хг б Я и такая последовательность (г„), что ссп Е (с( х„Е Я д 1пп г„= г,. Любая подпоследовательность (г,) сходится к га б Я, что противоречит определению компакта. Источник противоречия — в предположении, что множество Я не замкнуто. Следовательно, Я вЂ” замкнутое множество. Достаточность. Пусть множество Я С С замкнутое н ограниченное, В силу замкнутости оно содержит все свои точки прикосновения (см.

пюк5, гл. 1). Рассмотрим любую последовательность (х ) его то'ек. Поскольку она ограничена, то, согласно теореме Больцано — Вейерштрасса 48 Гл. 2. Комплексные числа и функции комплексного переменного (см. теорему 5, п. 2.3), существует подпоследовательность (х„ь), сходящаяся к некоторой точке х Е С. Так как множество Я замкнутое и Чп Е )Ч г„Е Я, то х Е В. Согласно определению 1, множество Я компактное в себе. М Теорема 3 (Бореля — Лебега). Пз любого покрытия компакта К С С бесконечным семейством (С )„е„аткрытыл подмножеств 6 С С можно выделить конечное покрытое. М Утверждение является частным случаем теоремы 6, 5 4, гл. 1. И 2.5.

Предел и непрерывность функции комплексного переменного. Понятие отобраэкення из одного множества в другое дано в п. 1.8, гл. 1. Предел, непрерывность, а также свойства непрерывных отображений из одного мезрического пространства в другое рассмотрены в з 6, гл.

1. Будем изучать отображения 1': С ь С и (: К С. При этом результаты, изложенные в з 6, автоматически имеют силу в рассматриваемых случаях. Задание комплексной функции комплексного переменного ш = у(х), х Е РР равносильно заданию двух функций и: Кз - и и и: Кз -ы К с областью определения Рг С К'. При этом функция и называется дгигтаительнай частью функции 1', а функция в — ее мнимой частью, т.е. и = Ке у, п = 1гп 1', у(г) = и(х, р) Е (н(х, у). Таким образом, изучение функций 1': С -ь С сводится к рассмотрению свойств двух числовых функций и и и двух независимых переменных х и у.

В теории функций комплексного переменного биективное отображение области 6 С С на область Р С С С Р г принято называть одночастной функцией. Зго означает, что (х1 Е С, гг Е б д г~ Ф зг) ю ~(х~) Ф У(хг). Определение 1. Пусть э': С С и хь — пргдгльнал точка множества Рг. Число а Е С называется частичным пределам функции 1' а точке гь, если существует такал паглгдааательнасть (х„) точек множества РР чта (х„зо) гь (ьуп Е М г ф хо) Л ( Йп Г(х„) = о). (1) Множество всех частичных пределов функции У в точке, обозначим через Ег(хь).

Определение 2. Если множества ЕГ(хь) содержит лишь числа о, та ана называется пределам функции У в точке хь и обозначается сильаалам бга У( ). 'и Определение 3. Функция У называетсл непрерывной в точке зь Е Рю если !нп у(г„) = Э(зь) всякий раз, нак только х„ха д гн Е гч х„Е Р1. Если гр Е Р) и ЯвляетсЯ предельной точкой множества Рг, то 1 непрерыВна в точке х, тогда и только тогда, когда 1цп У(х) = э'(го).

-ь В изолированной точке зь Е Рг каждая функция ( непрерывна. Функция У, не являющаяся непрерывной в точке хь С Рг, называется разрывной в ней. Пусть гь Е Рг — предеяьная точка множества Р,. Она называется точкой устранимога разрыва щья функции У, если существует 1цп У(з) = о, о Е С и о х Г(зь). В этом случае ь функция (ь, определенная условиями Э(х), если "Е РГ)(га), )ь(х) = а при г= ь, непрерывна в точке хь. Иногда говорят: "функция э называется непрерывной в точке хю Е Рг, если ее приращение в этой точке бесконечно мало всякий раз, как только бесконечно мало приращение аргумента" В этой формулировке под бесконечно малым приращением аргумента понимают бесконечно малуиз последовательность (Ьз„) = ( „— хь), хь Е РР х„Е Рг тгп Е р(, а под приращением функции г подразумевают последовательность (гху(х„ д .)) = (Т(х + г1х.) - П ь)) = (Их.) - Т( )).

в 2. Топология комплексной плоскости 49 2.б. Арифметические операции нвд пределамн и непрерывными функциями. Теорема В Пусть функции У и д непрерывны в точке го б Ву и Во = ВГ. Тогда непрерывны в этой точке функции у 4 д, )' — д, Уд. Если дополнительно д(го) ф О, то функция г непрерывна а тачке го. и Пусть г„-о го и )гп б М г„б ВГ = Во.

Тогда 1(г„) -+ у(го), д(г„) ч д(го) и, согласно теоремам о пределах последоватеяьностей, имеем йгп (г'(г„) кд(г„)) = г(го) ~ д(го), 1!пз !(г„)д(г„) = г (го)д(го) !нп 1(г ) г (го) д(г ) ' д(го) Согласно определению 3, и. 2.5, функции у т д, уд, с непрерывны в точке г,. > Теорема 2. Пусть г, — предельная тачка множества РГ Гз Во.

Характеристики

Тип файла
DJVU-файл
Размер
3,53 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6384
Авторов
на СтудИзбе
308
Средний доход
с одного платного файла
Обучение Подробнее