Главная » Просмотр файлов » А.К. Боярчук - Функции комплексного переменного - теория и практика

А.К. Боярчук - Функции комплексного переменного - теория и практика (1118159), страница 17

Файл №1118159 А.К. Боярчук - Функции комплексного переменного - теория и практика (А.К. Боярчук - Функции комплексного переменного - теория и практика) 17 страницаА.К. Боярчук - Функции комплексного переменного - теория и практика (1118159) страница 172019-05-09СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 17)

Есои 1пп У(г) = а, )пп д(г) = )), та 1пп(у~д)(г) =атД !пп(!'д)(г) = а)). Если !) Ф О, та Ощ — (г) = —. ° Ф пусть (г„) — такая произвольная последовательность комплексных чисел, что г„- г, гч г, б Рг г! Р, ((го). тогда, согласно теоРемам о пРеделах последоватеаьностей, имеем Г' 1'Ч! а 1пп (Т( „) ад( „)) = ат 15, 1!гп (Уд)( „) = аД 11щ — (г„) = —. !) Согласно определению 2, п. 2.5, указанные свойства равносильны утверждению, содержащемуся в теореме. и 2.7. Предел и непрерывность композиции функций.

Теорема 2 (о непрерывности композиции функций). Пусть функция ! непрерывна в точке го б Ву, а фУнкЦил Зо непРеРывна а тачке (о б Р . Если Зо((о) = го, та кампазиаиа У о Уо непрерывно в точке (о. и Утверждение является частным случаем теоремы 1, и.6.1, гл. 1. 1ь Справедливо ли аналогичное утверждение для композиции функций ) о уо, имеющих пределы в точках го и (о? Приводимый ниже пример лает отрицательный ответ на этот вопрос. Теоремы о пределе композиции, которые будут доказаны, требуют дополнительных ограничений, накладываемых на функции / и чо. Пример. Пусть у; С вЂ” + С, (о: С С, где ~ ~ г ~ ~ ~ ~~ ~ ~ ~ и ! ~ ~ ~ ~ и ! и~ ! ~~ ! 1, если а=О, 2 если (= — '(пбЩ з'(г) = ' , ' (а(() = О, есяи г б Сч(0), ( О, если ( (2 ( „-') и б (ц) .

( О, если (=-(пбЩ Тогда (лп Т(г) = О, )пп зо© = О. Вместе с тем (1 о зо) (() = 1 и о с о ) 1, если Ь'к(-'(нб(ц), Е,. ч (О) = (О, 1), т. е. Ощ (Т о уо) (() не существует. с-о Теорема 2 (о пределе композиции функций). Пусть (о — предельная точка множе- ства ВВ . Если 11ш у(г) = а, Ищ р(й) = го и суи(естаует такая окрестность ОП тачки (о, *о с и чта У( б (Ог П РВ Й(~о) Зо(() ф го, та Игп (у о)о)(() = а. м пУсть ((„) — такая последовательность, что („(о и кп б и („б Вг, '1((о). тогла = )о(Й) го Л г б ВУ'ч(го) Поэтому у(г„) = (у о р) К„) ч а при и оо. Согласно определению, !!щ (у о зо) (С) = а с со Гл.

2. комплексные числа н фуивзваи комплексного переменного 50 Теорема 3. Пусть (ь — предельная тачка мнозкества Вг, . Есеи йш (о(б) = хь и Функция 1 с са непрерывна в точке зь, то Вш (1 о (о) (О = 1(зь). с-с. ч Полагаем / )о((), если Г б Вв'!(ьь), "© 1 зь при С=Се. Функция уз* непрерывна в точке бь. Согласно теореме 1, функция 1 ь ы* непрерывная в этой точке. Поэтому йш (у ь !о) (() = йп! (у ь ы ) (() — (1 ь )ь*)(гь) = 1(вь)' с о с-сь 2,8. Свойства фупкппй, непрерывных на компаате. Теорема 1(о непрерывном образе компакта). Пусть 1: С вЂ” С вЂ” непрерывная функ- ция и Ру — компакт. Тогда многкество Ег компактное в себе, т.

е, непрерывный образ компакта есть компакт. Ч Утверждение является частным случаем теоремы п. 6.1, гл. 1. И Определение. Функция 1; С -ь С называется ограниченной на мноэсестве Рг„есеи существует такое число М б 1х, что Уг б Рг !1(с)~ ( М. уеарема 2 (Вейерштрасса). Пусть 1: С -ь С вЂ” непрерывная функция и Ру — компакт. Тогда функция 1 ограниченная, а ее модуль дктигает на мнонсестве Рг своих наибольшего и наи- меньшего значении. ч Согласно теореме 1, мнозкество Ег яющется компактом, т.е. замкнутым ограниченным множеством. По определению 5 (см. п. 3.2, гл.

1) его диаметр д(Е1) = зцр р( п, сез) ~елг, генг есп конечное число, т. е. д(Е1) б В. Согласно следствию из теоремы и. 3.2, гл. 1, Уюь б С мнозке- СТВО Еу СОДЕРжИтСЯ В ЗаМКНУтОМ ШаРЕ 0„(шь), ГДЕ Г = ПК Р(твь, Ьв) Ьд(Е1). ВЗЯВ Шь = О, ПОЛУ- ее! чнм, по множество Ег содержится в некотором замю!)том шаре конечною радиуса 12 с центром в начале координат. Поэтому )гх б Вг !ю~ = !1(г)~ < Е, т. е. функция 1 ограничена.

Отожле- ствим комплексную плоскость С с плоскостью К'. Тогда непрерывная ограниченная функция Щ принимает на замкнутом ограниченном множестве Вг С К' свои наибольшее и наименьшее зна- чения, согласно теореме Вейерштрасса для непрерывной функции (о: К К. Следовательно, существуют такие точки з! б Ву, гз б Рг что '!у(х!)~ = '"1 11(хП, !1(гз)! = з"Р !1(хН " *епг епг Чг б Вг выполняются неРавенства )1(х!)( ч ~1(зИ ч )1(хзй, и Звмечавве. при определении непрерывной функции у в точке хь предполагали, что у(гь) гь сс, при изучении отображений множеств с помощью аналитических функций целесообразно огкьзьться ог этого ограничения и считать функцию у непрерывной е точке хь, где у(хь) = сс, если !ип у(х) = со.

В этом *ь — )в случае функцию У называют обобщенно-ненрерыеноа например, функция С С, где если г б Сг(0, сс), 1(х)= 0 лри х =со, со лрн с=О, обобщенно-непрерывная в плоскости С. дья нее йщ у(х) = 0 = у(сс), йщ у(г) = со = у(0). 9 3. Непрерывные и гладкие кривые. Односвязные и многосвязные области В курсе математического анализа рассматривается понатие проитодной вектор ягуикции у: К-+В, Вг =(а, Ц, где 1=(уп уз, ", у ) — упорялоченный набор функций 11 (у = 1, пь). 53.

Непрерывные н гладкие кривые. Односвязные и многосвюиые области 5( Вектор-функция у ди<6<йеренцируема на сегменте [а, Ь[ тогда и только тогда, когда на нем диффеРенциРУемы фУнкции У<, и пРи этом ч1 Е [а, Ь] У'(1) = (У'<(1), Уз~(1),, У~ (1)) (в точках а и Ь гчп<+Ьг< речь идет об односторонних производных). Отображение [а, Ь[ — + С можно рассматривать как вектор-Функцию )р = ((р<, урэ) С м~. Тогда, если функции ур< и (оэ дифференцируемы на сегменте [а, Ь], фУнкциЯ (о также диффеРенциРУема и ч1 Е [а, Ь[ УР (1) = УР, < Ц Ч-(УР<(1) = (УР <(1), Уэз(1)). Определение Е Множеапео у С С (ияи т С м~) называется непрерывной кривой (т раенторией), если существует непрерывное отображение [а, Ц т. ]Три этом отображение ур на называется параметрическим представлением кривой у.

Из курса математического анализа известно, что отобрюкение ур = (уч, урэ) непрерывно тогда и только тогда, когда функции р< и (рз непрерывны. Для каждой непрерывной кривой у фиксируется одно из двух взаимно противоположных направлений движения подвижной точки 1 Е [а, Ь], соответствуюшее возрастанию или убыванию параметра. В первом слГ<ае ур(а) есть начало, у<(6) — конец кривой, а во втором случае зти точки меняются местами. Кривая, начальная и конечная точки которой совпадают, называется замкнутой. Если у С В С С (у С Я С С), то говорят, что кривая у лежит в множестве Я или содержится в нем.

Если одна и та же точка кривой т соответствует двум или более различным значениям параметра, из которых по крайней мере одно отлично от а и от Ь, то такая точка называется кратной. Непрерывная кривая, не имеюшая кратных точек, называется жорданоеой нли простой. Другими словами, кривая т С С называется жорда«ооой, если ее параметрическое представление ур является биектнвным отображением.

Если ур(а) = ур(6), то жорданова кривая ниывается замкнутой. Пусть у< и <]< — параметрические представления непрерывной кривой т, Рр = [а, 6], Рр — — [а<, Ь<[. Они называются эквивалентным, если существует такая непрерывная возрастаюшая функция [а, Ь] [а„Ь,], что ур = <(< р ц, В этом случае записываем (р - <]<. Определение 2. Множество т С С (или т С Н~) называется простой гладкой при еой (траенторией), если сущестоует непрерывно дилл]<еренцируел<ое отображение [а, 6] — < у с отличной от нуяя проиэеодиой Рйи этом отображение у< называется параметрическим предстоелениел< сходной кривой у.

Если <6 — лругое параметрическое представление гладкой кривой у, Р„= [ан Ь<], и сушествует такая непрерывно дифференцируемая функция [а, Ь] [а„Ь,], что <у1 Е [а, Ь] П'(1) > О на и <]< о <у = ур, то наралмтрическ<ш представления ур и <6 называются эквиеилгнтными. Определение 3. Множество -у„р всех эквивалентных параметрических представлений простой жадной криной 3 назыеается ее ориентацией. Упорядоченная пара Г = (т, те<) называется ориентированной гладкой кривой Г. Очевидно, что ориентация простой гладкой кривой однозначно определяется указанием ее начальной точки. Ориентацию простой гладкой кривой у с параметрическим представлением у< апрелю<лют также выбором одного из двух возможных направлений единичного касательного вектора г(М) = ~,<'„'~, где М = у<(1) Е у.

Характеристики

Тип файла
DJVU-файл
Размер
3,53 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6361
Авторов
на СтудИзбе
310
Средний доход
с одного платного файла
Обучение Подробнее