Главная » Просмотр файлов » Е.Е. Тыртышников - Матричный анализ и линейная алгебра

Е.Е. Тыртышников - Матричный анализ и линейная алгебра (1113045), страница 33

Файл №1113045 Е.Е. Тыртышников - Матричный анализ и линейная алгебра (Е.Е. Тыртышников - Матричный анализ и линейная алгебра) 33 страницаЕ.Е. Тыртышников - Матричный анализ и линейная алгебра (1113045) страница 332019-04-28СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 33)

Îáðàòíîå â îáùåì ñëó÷àåíå âåðíî. Íàïðèìåð, ëþáîé èíòåðâàë M = (a, b) âåùåñòâåííîé îñè ìîæíî ðàññìàòðèâàòü êàê ìåòðè÷åñêîå ïðîñòðàíñòâî ñ ðàññòîÿíèåì ρ(x, y) = |x − y|. Ïîñëåäîâàòåëüíîñòüxk = a + (b − a)/k ÿâëÿåòñÿ ôóíäàìåíòàëüíîé, íî íå ìîæåò ñõîäèòüñÿ íè ê êàêîìóýëåìåíòó èç M (åå ïðåäåëîì äîëæíî áû áûòü ÷èñëî a, íî a ∈/ M ).Ìåòðè÷åñêîå ïðîñòðàíñòâî íàçûâàåòñÿ ïîëíûì, åñëè â íåì ëþáàÿ ôóíäàìåíòàëüíàÿïîñëåäîâàòåëüíîñòü ÿâëÿåòñÿ ñõîäÿùåéñÿ. íà÷àëüíûõ êóðñàõ ìàòåìàòè÷åñêîãî àíàëèçà îáû÷íî äîêàçûâàåòñÿ, ÷òî ôóíäàìåíòàëüíûå ïîñëåäîâàòåëüíîñòè ÷èñåë èç R ÿâëÿþòñÿ ñõîäÿùèìèñÿ â R òàêèì îáðàçîì,ìåòðè÷åñêîå ïðîñòðàíñòâî R ñ ðàññòîÿíèåì ρ(x, y) = |x − y| ÿâëÿåòñÿ ïîëíûì.Âñå ïîíÿòèÿ è ôàêòû, ïîëó÷åííûå äëÿ ìåòðè÷åñêèõ ïðîñòðàíñòâ, ïåðåíîñÿòñÿ íàïðîèçâîëüíûå íîðìèðîâàííûå ïðîñòðàíñòâà.

Ïðè ýòîì âñåãäà ïðåäïîëàãàåòñÿ, ÷òî ðàññòîÿíèå â íèõ ââîäèòñÿ ñ ïîìîùüþ íîðìû: ρ(x, y) = ||x − y||. Ïîëíîå íîðìèðîâàííîåïðîñòðàíñòâî íàçûâàåòñÿ òàêæå áàíàõîâûì. 4Çàäà÷à.ïðîñòðàíñòâåÄîêàæèòå, ÷òî ôóíêöèÿR.ρ(x, y) = |x − y|/(1 + |x − y|)çàäàåò ðàññòîÿíèå â âåùåñòâåííîìÏîðîæäàåòñÿ ëè îíî êàêîé-ëèáî íîðìîé? Áóäåò ëè ïðîñòðàíñòâî ïîëíûì?3 Åùå îäíî (êðàñèâîå, íî ðåäêî èñïîëüçóåìîå) íàçâàíèå ñõîäÿùàÿñÿ â ñåáå.4  ÷åñòü ïîëüñêîãî ìàòåìàòèêà, ïðîôåññîðà Ëüâîâñêîãî óíèâåðñèòåòà Ñòåôàíà Áàíàõà.Ëåêöèÿ 2323.1Ìíîæåñòâà â ìåòðè÷åñêîì ïðîñòðàíñòâåÏóñòü M ìåòðè÷åñêîå ïðîñòðàíñòâî, a ∈ M è r > 0.

ÌíîæåñòâàM (a, r) = {x ∈ M : ρ(a, x) < r},M (a, r) = {x ∈ M : ρ(a, x) ≤ r}.íàçûâàþòñÿ îòêðûòûì øàðîì è çàìêíóòûì øàðîì ðàäèóñà r ñ öåíòðîì â òî÷êå a.Ïóñòü S êàêîå-òî ìíîæåñòâî òî÷åê â ìåòðè÷åñêîì ïðîñòðàíñòâå M . Ìíîæåñòâî Síàçûâàåòñÿ îãðàíè÷åííûì, åñëè îíî öåëèêîì ñîäåðæèòñÿ â íåêîòîðîì øàðå.Òî÷êà a ∈ S íàçûâàåòñÿ âíóòðåííåé äëÿ S , åñëè îíà ñîäåðæèòñÿ â S âìåñòå ñ íåêîòîðûì îòêðûòûì øàðîì. Ìíîæåñòâî S íàçûâàåòñÿ îòêðûòûì â M , åñëè ëþáàÿ åãîòî÷êà ÿâëÿåòñÿ âíóòðåííåé. Ïóñòîå ìíîæåñòâî ïî îïðåäåëåíèþ ñ÷èòàåòñÿ îòêðûòûì.Ïóñòü x ∈ M è ñóùåñòâóåò ïîñëåäîâàòåëüíîñòü òî÷åê xk ∈ S , ñõîäÿùàÿñÿ ê x.

Âýòîì ñëó÷àå x íàçûâàåòñÿ òî÷êîé ïðèêîñíîâåíèÿ äëÿ S . Åñëè xk 6= x äëÿ âñåõ k , òî xíàçûâàåòñÿ ïðåäåëüíîé òî÷êîé äëÿ S . Î÷åâèäíî, ëþáàÿ òî÷êà ïðèêîñíîâåíèÿ, íå ïðèíàäëåæàùàÿ ìíîæåñòâó S , ÿâëÿåòñÿ äëÿ íåãî ïðåäåëüíîé.Çàìûêàíèåì ìíîæåñòâà S íàçûâàåòñÿ îíî ñàìî ïëþñ âñå åãî ïðåäåëüíûå òî÷êè.Îáîçíà÷åíèå: [S]. Ìíîæåñòâî S íàçûâàåòñÿ çàìêíóòûì, åñëè îíî ñîäåðæèò âñå ñâîèïðåäåëüíûå òî÷êè: [S] = S . Íåñëîæíî ïðîâåðèòü, ÷òî S çàìêíóòî â òîì è òîëüêî â òîìñëó÷àå, êîãäà äîïîëíèòåëüíîå â M ìíîæåñòâî O = M \S ÿâëÿåòñÿ îòêðûòûì.Çàäà÷à.Âñåãäà ëè çàìûêàíèå îòêðûòîãî øàðà ñîâïàäàåò ñ çàìêíóòûì øàðîì ñ òåì æå öåíòðîìè ðàäèóñîì?Çàäà÷à. Ïóñòü M = N,ρ(m, n) = 1 + min{1/m, 1/n}à ðàññòîÿíèå ìåæäó íàòóðàëüíûìè ÷èñëàìèïðèm 6= nè0ïðèm = n.Äîêàæèòå, ÷òîm, nM îïðåäåëÿåòñÿ êàêïîëíîå ìåòðè÷åñ-êîå ïðîñòðàíñòâî.

Äîêàæèòå òàêæå, ÷òî çàìêíóòûå øàðûM (1, 1 + 1/2) ⊃ M (2, 1 + 1/3) ⊃ M (3, 1 + 1/4) ⊃ ...âëîæåíû, íî èìåþò ïóñòîå ïåðåñå÷åíèå.Ìíîæåñòâî S íàçûâàåòñÿ êîìïàêòíûì, åñëè èç ëþáîé ïîñëåäîâàòåëüíîñòè òî÷åêxk ∈ S ìîæíî âûäåëèòü ïîäïîñëåäîâàòåëüíîñòü, ñõîäÿùóþñÿ ê íåêîòîðîé òî÷êå x ∈ S .ßñíî, ÷òî êîìïàêòíîå ìíîæåñòâî îáÿçàíî áûòü çàìêíóòûì. Îáðàòíîå íå âåðíî: íàïðèìåð, S = M âñåãäà ÿâëÿåòñÿ çàìêíóòûì ìíîæåñòâîì, íî ìîæåò è íå áûòü êîìïàêòíûì. Çàìåòèì òàêæå, ÷òî ëþáîå êîìïàêòíîå ìíîæåñòâî S ÿâëÿåòñÿ îãðàíè÷åííûì(ïîäïîñëåäîâàòåëüíîñòü íåîãðàíè÷åííîé ïîñëåäîâàòåëüíîñòè íå ìîæåò áûòü ñõîäÿùåéñÿ, òàê êàê íå ìîæåò áûòü îãðàíè÷åííîé). íà÷àëüíûõ êóðñàõ àíàëèçà ðàññìàòðèâàåòñÿ ìåòðè÷åñêîå ïðîñòðàíñòâî R ñ ðàññòîÿíèåì ρ(x, y) = |x − y|, à êîìïàêòíûì ïðèíÿòî íàçûâàòü ëþáîå çàìêíóòîå è îãðàíè÷åííîå ìíîæåñòâî òî÷åê èç R.

 äàííîì ñëó÷àå ýòî îïðåäåëåíèå ðàâíîñèëüíî íàøåìó149150Ëåêöèÿ 23îïðåäåëåíèþ êîìïàêòíîñòè. Áîëåå òîãî, ìû ñêîðî äîêàæåì, ÷òî ýòè äâà îïðåäåëåíèÿðàâíîñèëüíû è â ñëó÷àå ïðîèçâîëüíûõ êîíå÷íîìåðíûõ íîðìèðîâàííûõ ïðîñòðàíñòâ.Îäíàêî, â áåñêîíå÷íîìåðíûõ ïðîñòðàíñòâàõ çàìêíóòîñòü è îãðàíè÷åííîñòü íåäîñòàòî÷íû äëÿ âûäåëåíèÿ ñõîäÿùåéñÿ ïîäïîñëåäîâàòåëüíîñòè.Ãîâîðÿ î ðàññòîÿíèè â ëèíåéíûõ ïðîñòðàíñòâàõ, ìû âñåãäà áóäåì ïîëàãàòü, ÷òî îíîââîäèòñÿ ñ ïîìîùüþ êàêîé-ëèáî íîðìû.Çàäà÷à.Âåðíî ëè, ÷òî çàìûêàíèå âûïóêëîãî ìíîæåñòâà ÿâëÿåòñÿ âûïóêëûì? Âåðíî ëè, ÷òîìíîæåñòâî âíóòðåííèõ òî÷åê âûïóêëîãî ìíîæåñòâà áóäåò âûïóêëûì?23.2Êîìïàêòíîñòü è íåïðåðûâíîñòüÂåùåñòâåííàÿ ôóíêöèÿ f (x), îïðåäåëåííàÿ äëÿ òî÷åê x ìåòðè÷åñêîãî ïðîñòðàíñòâàM , íàçûâàåòñÿ íåïðåðûâíîé â òî÷êå x ∈ M , åñëè äëÿ ëþáîé ïîñëåäîâàòåëüíîñòè xk ,ñõîäÿùåéñÿ ê x, ïîñëåäîâàòåëüíîñòü çíà÷åíèé f (xk ) ñõîäèòñÿ ê f (x).Òåîðåìà Âåéåðøòðàññà.

Äëÿ ëþáîé âåùåñòâåííîé ôóíêöèè f (x), íåïðåðûâíîé âîâñåõ òî÷êàõ êîìïàêòíîãî ìíîæåñòâà S , ñóùåñòâóþò òî÷êè xmin , xmax ∈ S òàêèå,÷òî f (xmin ) ≤ f (x) ≤ f (xmin ) äëÿ âñåõ x ∈ S .Äîêàçàòåëüñòâî. Åñëè ïðåäïîëîæèòü, ÷òî f (xk ) > k äëÿ íåêîòîðîé ïîñëåäîâàòåëü-íîñòè òî÷åê xk ∈ S , òî âîçíèêàåò ïðîòèâîðå÷èå ñ âîçìîæíîñòüþ âûäåëåíèÿ ñõîäÿùåéñÿïîäïîñëåäîâàòåëüíîñòè: åñëè xki → x, òî f (xki ) → f (x), íî f (xki ) íå ìîæåò ñõîäèòüñÿ,òàê êàê íå ÿâëÿåòñÿ îãðàíè÷åííîé. Ïîýòîìó f (x) îãðàíè÷åíà ñâåðõó.

Ïóñòü cmax òî÷íàÿ âåðõíÿÿ ãðàíü ìíîæåñòâà çíà÷åíèé {f (x), x ∈ S}. Òîãäà äëÿ êàæäîãî k íàéäåòñÿòî÷êà xk ∈ S òàêàÿ, ÷òî cmax − 1/k ≤ f (xk ) ≤ cmax . Âûáåðåì ñõîäÿùóþñÿ ïîäïîñëåäîâàòåëüíîñòü xki → x è ïåðåéäåì â ïîñëåäíèõ íåðàâåíñòâàõ ê ïðåäåëó ⇒ f (x) = cmax .Îãðàíè÷åííîñòü ñíèçó è ñóùåñòâîâàíèå òî÷êè ìèíèìóìà äîêàçûâàåòñÿ ïåðåõîäîì êg(x) = −f (x). 223.3Êîìïàêòíîñòü åäèíè÷íîé ñôåðûÐàññìîòðèì åäèíè÷íóþ ñôåðó â ïðîñòðàíñòâå Cn îòíîñèòåëüíî 2-íîðìû:>nS2 = {x ∈ C : ||x||2 = 1} = {x = [x1 , . . .

, xn ] :nX|x|2i = 1}.i=1Ëåììà 1. Åäèíè÷íàÿ ñôåðà S2 â ïðîñòðàíñòâå Cn êîìïàêòíà îòíîñèòåëüíî 2-íîðìû.Äîêàçàòåëüñòâî. Ðàññìîòðèì ïðîèçâîëüíóþ ïîñëåäîâàòåëüíîñòü âåêòîðîâxk = [xk1 , . . . , xkn ]> ∈ S2 .Ñîîòâåòñòâóþùèå êîîðäèíàòíûå ïîñëåäîâàòåëüíîñòè óäîâëåòâîðÿþò íåðàâåíñòâàì|xk1 | ≤ 1, |xk2 | ≤ 1, . .

. , |xkn | ≤ 1.Ñîãëàñíî ëåììå îá îãðàíè÷åííûõ ïîñëåäîâàòåëüíîñòÿõ (ñì. Ëåêöèþ 19), ñóùåñòâóåòïîäïîñëåäîâàòåëüíîñòü íîìåðîâ k1 < k2 < . . . òàêàÿ, ÷òî êàæäàÿ èç êîîðäèíàòíûõïîñëåäîâàòåëüíîñòåé xki l áóäåò ñõîäèòüñÿ è óäîâëåòâîðÿòü ðàâåíñòâónXi=1|xki l |2 = 1.(∗)Å. Å. Òûðòûøíèêîâ151Ïóñòü xi = lim xki l è x = [x1 , . .

. , xn ]> . Òîãäàl→∞nX||xkl − x||2 =!1/2|xki l − xi |2→ 0.i=1Ïåðåõîäÿ â (∗) ïðåäåëó, ïîëó÷àåì x ∈ S2 .2Ëåììà 2. Äëÿ ïðîèçâîëüíîé íîðìû || · || â ïðîñòðàíñòâå Cn ôóíêöèÿ f (x) = ||x||ÿâëÿåòñÿ íåïðåðûâíîé îòíîñèòåëüíî 2-íîðìû.Äîêàçàòåëüñòâî. Ïóñòü xk = [xk1 , . . . , xkn ]> → x = [x1 , . . . , xn ]> . Òîãäà, èñïîëüçóÿ íåðà-âåíñòâî òðåóãîëüíèêà äëÿ íîðì, íàõîäèì|f (xk ) − f (x)| = | ||xk || − ||x|| | ≤ ||xk − x|| ≤X|xki − xi | ||ei ||,1≤i≤nãäå ei = [0, . .

. , 1, . . . 0]> âåêòîð èç íóëåé, êðîìå i-é êîìïîíåíòû, ðàâíîé 1. Ïðàâàÿ÷àñòü ñòðåìèòñÿ ê íóëþ ïðè||xk − x||2 =nX!1/2|xki − xi |2→ 0.2i=1Ëåììà 3. Äëÿ ëþáîé íîðìû || · || íà Cn ñóùåñòâóþò êîíñòàíòû c1 , c2 > 0 òàêèå, ÷òîc1 ≤ ||x|| ≤ c2∀ x ∈ S2 .Ïðè ýòîì c1 = ||x1 ||, c2 = ||x2 || äëÿ íåêîòîðûõ âåêòîðîâ x1 , x2 ∈ S2 .Äîêàçàòåëüñòâî. Äîñòàòî÷íî çàìåòèòü, ÷òî ôóíêöèÿ f (x) = ||x|| íåïðåðûâíà îòíîñèòåëüíî 2-íîðìû íà ìíîæåñòâå S2 , êîìïàêòíîì îòíîñèòåëüíî 2-íîðìû.23.42Ýêâèâàëåíòíûå íîðìûÄâå íîðìû || · ||(a) è || · ||(b) íà îäíîì è òîì æå ëèíåéíîì ïðîñòðàíñòâå V íàçûâàþòñÿýêâèâàëåíòíûìè, åñëè ñóùåñòâóþò êîíñòàíòû c1 , c2 > 0 òàêèå, ÷òîc1 ||x||(a) ≤ ||x||(b) ≤ c2 ||x||(a)∀ x ∈ V.Òåîðåìà.

Åñëè V êîíå÷íîìåðíî, òî ëþáûå íîðìû íà íåì ýêâèâàëåíòíû.Äîêàçàòåëüñòâî. Ïðåæäå âñåãî, çàìåòèì, ÷òî ëþáàÿ íîðìà || · || íà Cn ýêâèâàëåíòíà|| · ||2 . Ïóñòü x ∈ Cn⇒ x/||x||2 ∈ S2 . Ïî ëåììå 3, c1 ≤ kx/||x||2 k ≤ c2c1 ||x||2 ≤ ||x|| ≤ c2 ||x||2⇒∀ x ∈ Cn .Îòñþäà ëåãêî âûâåñòè ýêâèâàëåíòíîñòü ëþáûõ äâóõ íîðì íà Cn . ñëó÷àå ïðîèçâîëüíîãî êîíå÷íîìåðíîãî ïðîñòðàíñòâà V ñ íîðìîé || · ||V ôèêñèðóåìâ íåì ïðîèçâîëüíûé áàçèñ e1 , . . .

, en è ðàññìîòðèì âçàèìíî-îäíîçíà÷íîå ñîîòâåòñòâèå>v ↔ [x1 , . . . , xn ] ,v=nXi=1xi ei .152Ëåêöèÿ 23Èñïîëüçóÿ åãî, ââåäåì íîðìó íà Cn ñëåäóþùèì îáðàçîì:nX>||[x1 , . . . , xn ] ||V ≡ xi ei .i=1VÑâîéñòâà íîðìû ïðîâåðÿþòñÿ íåïîñðåäñòâåííî. Ââåäåì òàêæå åùå îäíó íîðìó íà V :nXxi ei ≡ ||[x1 , .

. . , xn ]> ||2 .i=12Óæå óñòàíîâëåííàÿ ýêâèâàëåíòíîñòü ëþáûõ äâóõ íîðì íà Cn äîêàçûâàåò, î÷åâèäíî,ýêâèâàëåíîñòü äàííûõ (à çíà÷èò, è ëþáûõ) íîðì â ïðîñòðàíñòâå V . 2Ñëåäñòâèå. Ñõîäèìîñòü ïî ëþáîé íîðìå â êîíå÷íîìåðíîì ïðîñòðàíñòâå ðàâíîñèëüíàïîîêîîðäèíàòíîé ñõîäèìîñòè.Çàìåòèì, ÷òî íàì óæå âñòðå÷àëèñü íîðìû, êîòîðûå íå ìîãóò áûòü ýêâèâàëåíòíûìè:ýòî C -íîðìà è C 1 -íîðìà â ïðîñòðàíñòâå C 1 [a, b] ôóíêöèé, íåïðåðûâíûõ íà îòðåçêå [a, b]âìåñòå ñ ïåðâîé ïðîèçâîäíîé:||f ||C = max |f (x)|,a≤x≤b||f ||C 1 = max (|f (x)| + |f 0 (x)|).a≤x≤b√ ñàìîì äåëå, ïîñëåäîâàòåëüíîñòü ôóíêöèé f k (x) = sin kx/ k ÿâëÿåòñÿ ñõîäÿùåéñÿâ íîðìå C , íî ðàñõîäèòñÿ â íîðìå C 1 .

Îòñþäà, êñòàòè, ïîëó÷àåì (íå î÷åíü ïðÿìîå!)äîêàçàòåëüñòâî áåñêîíå÷íîìåðíîñòè ëèíåéíîãî ïðîñòðàíñòâà C 1 [a, b].23.5Êîìïàêòíîñòü çàìêíóòûõ îãðàíè÷åííûõ ìíîæåñòâÒåîðåìà.  êîíå÷íîìåðíîì íîðìèðîâàííîì ïðîñòðàíñòâå ìíîæåñòâî ÿâëÿåòñÿ êîì-ïàêòíûì òîãäà è òîëüêî òîãäà, êîãäà îíî çàìêíóòî è îãðàíè÷åíî.Äîêàçàòåëüñòâî. Ìû óæå çíàåì, ÷òî êîìïàêòíîå ìíîæåñòâî â ìåòðè÷åñêîì ïðîñòðàíñòâå âñåãäà ÿâëÿåòñÿ çàìêíóòûì è îãðàíè÷åííûì. Ïóñòü ìíîæåñòâî S çàìêíóòî èîãðàíè÷åíî îòíîñèòåëüíî êàêîé-òî íîðìû â Cn .  ñèëó ýêâèâàëåíòíîñòè íîðì â êîíå÷íîìåðíîì ïðîñòðàíñòâå, S òàêæå çàìêíóòî è îãðàíè÷åíî îòíîñèòåëüíî 2-íîðìû.Ïîýòîìó ëþáàÿ ïîñëåäîâàòåëüíîñòü âåêòîðîâ èç S èìååò îãðàíè÷åííûå êîîðäèíàòíûåïîñëåäîâàòåëüíîñòè. Ïî ëåììå îá îãðàíè÷åííûõ ïîñëåäîâàòåëüíîñòÿõ, ìû ìîæåì âûáðàòü ïîäïîñëåäîâàòåëüíîñòü, ñõîäÿùóþñÿ â 2-íîðìå ê êàêîìó-òî âåêòîðó x ∈ S .

Ýòàæå ïîäïîñëåäîâàòåëüíîñòü áóäåò ñõîäèòüñÿ è îòíîñèòåëüíî ëþáîé äðóãîé íîðìû. 2Îòñþäà âûòåêàåò, íàïðèìåð, êîìïàêòíîñòü åäèíè÷íîé ñôåðû è êîìïàêòíîñòü çàìêíóòîãî øàðà â ëþáîì êîíå÷íîìåðíîì ïðîñòðàíñòâå îòíîñèòåëüíî ëþáîé íîðìû.23.6Íàèëó÷øèå ïðèáëèæåíèÿÏóñòü x ∈ V è L íåïóñòîå ìíîæåñòâî âåêòîðîâ èç V . Âåëè÷èíóγ = inf ||x − z||z∈Líàçûâàþò ðàññòîÿíèåì ìåæäó x è L.

Характеристики

Тип файла
PDF-файл
Размер
1,67 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6458
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее