Е.Е. Тыртышников - Матричный анализ и линейная алгебра (1113045), страница 37
Текст из файла (страница 37)
. . , qir ]Rr .Ñèñòåìó ñòîëáöîâ qi1 , . . . , qir äîïîëíèì äî îðòîíîðìèðîâàííîãî áàçèñà â n-ìåðíîìïðîñòðàíñòâå ñòîëáöîâ è èç ïîëó÷åííûõ ñòîëáöîâ ñîñòàâèì ìàòðèöó Q, ñîõðàíèâïåðâîíà÷àëüíûå ñòîëáöû â ïîçèöèÿõ i1 , . . . , ir .Çàïèñàâ A = QR, âèäèì, ÷òî â ìàòðèöå R ïåðâûå r ýëåìåíòîâ il -ãî ñòîëáöà òå æå,÷òî â l-ì ñòîëáöå ìàòðèöû Rr .  òî æå âðåìÿ, j -é ñòîëáåö ïðè il < j < il+1 èìååò íóëèâ ïîçèöèÿõ íèæå il -é.
2Çàäà÷à.ÏóñòüA ∈ Cn×nèìååò ñòîëáöûa1 , . . . , an ∈ C n .| det A| ≤nYÄîêàæèòå íåðàâåíñòâî||aj ||2 .j=1Çàäà÷à.ÏóñòüAn ñ ýëåìåíòàìè aij = ±1. Äîêàæèòå,ìàòðèöàìè Àäàìàðà) è n ≥ 3, òî n äåëèòñÿ íà 4. ìàòðèöà ïîðÿäêà(òàêèå ìàòðèöû íàçûâàþòñÿ÷òî åñëè| det A| = nn/2170Ëåêöèÿ 25Ëåêöèÿ 2626.1Ëèíåéíûå ôóíêöèîíàëûÏóñòü V ëèíåéíîå ïðîñòðàíñòâî íàä ÷èñëîâûì ïîëåì P è f (x) ôóíêöèÿ îò âåêòîðàx ∈ V ñ ÷èñëîâûìè çíà÷åíèÿìè. Òàêèå ôóíêöèè ïðèíÿòî íàçûâàòü ôóíêöèîíàëàìè.Åñëè âûïîëíÿåòñÿ ñâîéñòâî ëèíåéíîñòèf (αx + βy) = αf (x) + βf (y) ∀ α, β ∈ P, ∀ x, y ∈ V,òî ôóíêöèÿ f íàçûâàåòñÿ ëèíåéíûì ôóíêöèîíàëîì èëè ëèíåéíîé ôîðìîé.Ïóñòü òåïåðü V íîðìèðîâàííîå ïðîñòðàíñòâî1 .
Ëèíåéíûé ôóíêöèîíàë íàçûâàåòñÿîãðàíè÷åííûì, åñëè äëÿ íåêîòîðîé êîíñòàíòû c > 0|f (x)| ≤ c||x||V∀ x ∈ V.(∗)Óòâåðæäåíèå 1. Äëÿ îãðàíè÷åííîñòè ëèíåéíîãî ôóíêöèîíàëà íåîáõîäèìà è äîñòàòî÷íà åãî íåïðåðûâíîñòü.Äîêàçàòåëüñòâî. Åñëè âûïîëíÿåòñÿ (∗), òî èç ñõîäèìîñòè ||xk − x||V → 0 ïðè k → ∞ñëåäóåò, ÷òî |f (xk ) − f (x)| = |f (xk − x)| ≤ c||xk − x||V → 0.Åñëè ëèíåéíûé ôóíêöèîíàë f (x) íåïðåðûâåí, òî ïîêàæåì, ÷òî îí îãðàíè÷åí íà åäèíè÷íîé ñôåðå S = {x : ||x||V = 1}. Åñëè ýòî íå òàê, òî äëÿ êàêîé-òî ïîñëåäîâàòåëüíîñòèâåêòîðîâ xk ∈ S èìååì |f (xk )| → ∞.Îòñþäà ||xk /|f (xk )| ||V → 0 ⇒ xk /|f (xk )| → 0.
 ñèëó íåïðåðûâíîñòè,f (xk /|f (xk )|) → f (0) = 0, ÷òî íåâîçìîæíî, òàê êàê |f (xk /|f (xk )|)| = |f (xk )|/|f (xk )| = 1.Èòàê, |f (x)| ≤ c äëÿ âñåõ x òàêèõ, ÷òî ||x||V = 1. Ñëåäîâàòåëüíî,|f (x/||x||V )| ≤ c⇒|f (x)| ≤ c||x||V ∀ x ∈ V.2Çàìå÷àíèå. Äëÿ ëèíåéíîãî ôóíêöèîíàëà íåïðåðûâíîñòü â êàêîé-òî îäíîé òî÷êå ðàâíîñèëüíà íåïðåðûâíîñòè âî âñåõ òî÷êàõ ïðîñòðàíñòâà.Óòâåðæäåíèå 2. Åñëè V êîíå÷íîìåðíî, òî ëþáîé ëèíåéíûé ôóíêöèîíàë íà V ÿâëÿåòñÿ îãðàíè÷åííûì.Äîêàçàòåëüñòâî.
Ïóñòü v1 , . . . , vn áàçèñ â V . Åñëè x = x1 v1 + . . . + xn vn , òî|f (x)| ≤nXi=11 Çíà÷èò,P =Cèëè|xi | |f (vi )| ≤ cnXi=1P = R.171|xi |,c ≡ max |f (vi )|.1≤i≤n172Ëåêöèÿ 26 êîíå÷íîìåðíîì ïðîñòðàíñòâå èç ñõîäèìîñòè ïî íîðìå âûòåêàåò ïîêîîðäèíàòíàÿ ñõîäèìîñòü. Ïîýòîìó åñëè xk → 0 ïðè k → ∞, òî xki → 0. Îòñþäà |f (xk )| → 0.
Çíà÷èò,ôóíêöèîíàë íåïðåðûâåí ïðè x = 0. 2Çàäà÷à.x∈Rm26.2f>f (Ax) = y AxËèíåéíûé ôóíêöîíàë. Äîêàæèòå, ÷òîAx,x.îïðåäåëåí íà ïðîñòðàíñòâå âåêòîðîâ âèäàäëÿ íåêîòîðîãîy∈Rm, íå çàâèñÿùåãî îòãäåA ∈ Rm×nèÑîïðÿæåííîå ïðîñòðàíñòâîÎïåðàöèè ñëîæåíèÿ è óìíîæåíèÿ íà ÷èñëî äëÿ ëèíåéíûõ ôóíêöèîíàëîâ îïðåäåëÿþòñÿåñòåñòâåííûì îáðàçîì.Ïóñòü f (x) è g(x) ëèíåéíûå ôóíêöèîíàëû íà V .
Òîãäà èõ ñóììîé íàçûâàåòñÿôóíêöèÿ h = f + g : V → C, îïðåäåëåííàÿ ïðàâèëîì h(x) ≡ f (x) + g(x). Äëÿ α ∈ Côóíêöèÿ h = αf : V → C îïðåäåëÿåòñÿ ïðàâèëîì h(x) ≡ αf (x).Ýëåìåíòàðíî ïðîâåðÿåòñÿ, ÷òî f + g è αf îñòàþòñÿ ëèíåéíûìè ôóíêöèîíàëàìè.Òàêèì îáðàçîì, ìíîæåñòâî âñåõ âñåõ ëèíåéíûõ ôóíêöèîíàëîâ íà V ïðåâðàùàåòñÿ âëèíåéíîå ïðîñòðàíñòâî.Îñîáûé èíòåðåñ ïðåäñòàâëÿåò ìíîæåñòâî âñåõ îãðàíè÷åííûõ ëèíåéíûõ ôóíêöèîíàëîâ.
Îíî òîæå ÿâëÿåòñÿ ëèíåéíûì ïðîñòðàíñòâîì, ïîñêîëüêó ñëîæåíèå è óìíîæåíèå íà÷èñëî íåïðåðûâíûõ ôóíêöèé ñîõðàíÿþò ñâîéñòâî íåïðåðûâíîñòè.Ëèíåéíîå ïðîñòðàíñòâî âñåõ îãðàíè÷åííûõ ëèíåéíûõ ôóíêöèîíàëîâ íà V íàçûâàåòñÿ ñîïðÿæåííûì ïðîñòðàíñòâîì äëÿ V . Îáîçíà÷åíèå: V ∗ .Íîðìîé ôóíêöèîíàëà f ∈ V ∗ íàçûâàåòñÿ âåëè÷èíà||f || =sup |f (x)|.||x||V =1Êîíå÷íîñòü ||f || âûòåêàåò èç îãðàíè÷åííîñòè f .
Àêñèîìû âåêòîðíîé íîðìû ïðîâåðÿþòñÿî÷åâèäíûì îáðàçîì.Çàäà÷à.Ïóñòüíîãî ïðîñòðàíñòâàçàâèñÿùèé îò26.3φφV. ëèíåéíûé ôóíêöèîíàë íà ñîïðÿæåííîì ïðîñòðàíñòâåφ(f ) = f (x0 ),f ∈ V ∗.Äîêàæèòå, ÷òîè íå çàâèñÿùèé îòãäåx0 ∈ VV∗äëÿ êîíå÷íîìåð- íåêîòîðûé ôèêñèðîâàííûé âåêòîð,Ïðèìåðû ëèíåéíûõ ôóíêöèîíàëîâ(1) Ïóñòü P ëèíåéíîå ïðîñòðàíñòâî âñåõ âåùåñòâåííûõ ìíîãî÷ëåíîâ íà îòðåçêå[−1, 1] ñ C -íîðìîé ||p||C = sup |p(x)|. Ïóñòü p0 (x) îáîçíà÷àåò ïðîèçâîäíóþ ìíî−1≤x≤1ãî÷ëåíà p(x) (ÿñíî, ÷òî p0 ∈ P ).
Ôóíêöèîíàë f : P → R, çàäàííûé ïðàâèëîìf (p) ≡ p0 (1),p ∈ P,ÿâëÿåòñÿ, î÷åâèäíî, ëèíåéíûì, íî íå îãðàíè÷åííûì: åñëè pn (x) = xn , òî ||pn ||C = 1è f (pn ) = n.Çàäà÷à.Äîêàæèòå, ÷òî ôóíêöèîíàëf (p) = p0 (0)òàêæå íå áóäåò îãðàíè÷åííûì.(2)  òîì æå ïðîñòðàíñòâå P ôóíêöèîíàë f (p) = p(0) ÿâëÿåòñÿ îãðàíè÷åííûì ëèíåéíûì ôóíêöèîíàëîì.Å. Å.
Òûðòûøíèêîâ(3) Ôóíêöèîíàë f (p) =173R1p(x)dx ÿâëÿåòñÿ ëèíåéíûì è îãðàíè÷åííûì íà P .−1(4) Ðàññìîòðèì ïðîñòðàíñòâî Cn ñ ëþáîé íîðìîé, è ïóñòü äàíû ÷èñëà c1 , . . . , cn .Ïóñòü x = [x1 , . . . , xn ]> ∈ Cn è f (x) = c1 x1 + . . . + cn xn . Ýòî îãðàíè÷åííûé ëèíåéíûé ôóíêöèîíàë íà Cn .26.4Ðàçìåðíîñòü äîïîëíèòåëüíîãî ïðîñòðàíñòâàÌíîæåñòâî L = {x ∈ V : f (x) = 0} íàçûâàåòñÿ ÿäðîì èëè íóëü-ïðîñòðàíñòâîì ëèíåéíîãî ôóíêöèîíàëà f : V → C. Îáîçíà÷åíèå: L = kerf . Ëåãêî âèäåòü, ÷òî L ïîäïðîñòðàíñòâî. Åñëè dim V = n è ôóíêöèîíàë íå ðàâåí íóëþ òîæäåñòâåííî, òî dim L = n − 1(äîêàæèòå!).
Ìû ñîáèðàåìñÿ äîêàçàòü, ÷òî â áåñêîíå÷íîìåðíîì ñëó÷àå êîíå÷íîé (è ðàâíîé 1) îêàçûâàåòñÿ ðàçìåðíîñòü òàê íàçûâàåìîãî äîïîëíèòåëüíîãî ïîäïðîñòðàíñòâà.Ïîäïðîñòðàíñòâî L0 â ïðîñòðàíñòâå V íàçûâàåòñÿ äîïîëíèòåëüíûì äëÿ ïîäïðîñòðàíñòâà L, åñëè ðàçëîæåíèå V = L + L0 ÿâëÿåòñÿ ïðÿìîé ñóììîé. Ðàçìåðíîñòü äîïîëíèòåëüíîãî ïðîñòðàíñòâà íàçûâàåòñÿ êîðàçìåðíîñòüþ ïîäïðîñòðàíñòâà L.Åñëè V êîíå÷íîìåðíî, òî åãî áàçèñ ìîæíî ïîëó÷èòü îáúåäèíåíèåì áàçèñîâ â L è0L .
Ïîýòîìó dim L0 = dim V − dim L ⇒ êîðàçìåðíîñòü îäíà è òà æå äëÿ ëþáîãîäîïîëíèòåëüíîãî ïðîñòðàíñòâà. Òî æå âåðíî è â áåñêîíå÷íîìåðíîì ñëó÷àå.Ñêàæåì, ÷òî a ∼ b, åñëè a − b ∈ L. Ýòî îòíîøåíèå ýêâèâàëåíòíîñòè íà V . ÏîýòîìóV ðàçáèâàåòñÿ íà ìíîæåñòâî íåïåðåñåêàþùèõñÿ êëàññîâ ýêâèâàëåíòíîñòè.Ïóñòü êëàññû [a] è [b] ïîðîæäåíû âåêòîðàìè a è b. Åñòåñòâåííûå îïðåäåëåíèÿ îïåðàöèé ñëîæåíèÿ è óìíîæåíèÿ íà ÷èñëî[a] + [b] = [a + b],α[a] = [αa]êîððåêòíû, òàê êàê èõ ðåçóëüòàòû íå çàâèñÿò îò âûáîðà ïðåäñòàâèòåëåé â êëàññàõ ýêâèâàëåíòíîñòè. Òàêèì îáðàçîì, ìíîæåñòâî êëàññîâ ýêâèâàëåíòíîñòè ïðåâðàùàåòñÿ â ëèíåéíîå ïðîñòðàíñòâî íàä òåì æå ïîëåì, ÷òî è ïðîñòðàíñòâî V .
Îíî íàçûâàåòñÿ ôàêòîðïðîñòðàíñòâîì. Îáîçíà÷åíèå: V /L.Óòâåðæäåíèå. Ëþáîå äîïîëíèòåëüíîå äëÿ L ïîäïðîñòðàíñòâî èçîìîðôíî ôàêòîðïðîñòðàíñòâó V /L.Äîêàçàòåëüñòâî. Äëÿ a ∈ L0 ïóñòü Φ(a) = [a]. Î÷åâèäíî, îòîáðàæåíèå Φ : L0 → V /Lñîõðàíÿåò îïåðàöèè è Φ(L) = V /L. Êðîìå òîãî, åñëè Φ(a) = Φ(b), òî a ∼ b ⇒a − b ∈ L è îäíîâðåìåííî a − b ∈ L0 ⇒ a − b = 0. Çíà÷èò, Φ ñîõðàíÿþùåå îïåðàöèèâçàèìíî-îäíîçíà÷íîå îòîáðàæåíèå L0 íà V /L äðóãèìè ñëîâàìè, èçîìîðôèìçì.
2Ñëåäñòâèå. Äëÿ ëþáûõ äâóõ ðàçëîæåíèé â ïðÿìóþ ñóììó V = L + L0 = L + L00ðàçìåðíîñòè äîïîëíèòåëüíûõ ïðîñòðàíñòâ L0 è L00 îäèíàêîâû.26.5Ëèíåéíûå ôóíêöèîíàëû è ãèïåðïëîñêîñòèÏóñòü L = kerf . Åñëè L = V , òî ôóíêöèîíàë òîæäåñòâåííî ðàâåí íóëþ (è ïîýòîìóíàçûâàåòñÿ íóëåâûì èëè òðèâèàëüíûì).Ïóñòü L 6= V . Òîãäà ñóùåñòâóåò âåêòîð x0 , äëÿ êîòîðîãî f (x0 ) 6= 0. Äëÿ ïðîèçâîëüíîãî âåêòîðà x ∈ V íàõîäèìf (x − αx0 ) = 0 ïðè α = f (x)/f (x0 )⇒x = z + αx0 , z ∈ L.174Ëåêöèÿ 26Î÷åâèäíî, α îäíîçíà÷íî îïðåäåëÿåòñÿ óñëîâèåì z ∈ L. Ïîýòîìó V åñòü ïðÿìàÿ ñóììàïîäïðîñòðàíñòâ L è L(x0 ). Òàêèì îáðàçîì, ÿäðî íåòðèâèàëüíîãî ëèíåéíîãî ôóíêöèîíàëà èìååò êîðàçìåðíîñòü, ðàâíóþ 1.Òåïåðü ðàññìîòðèì ìíîæåñòâî Mc = {x ∈ V : f (x) = c}. Åñëè f (x0 ) = c, òî, î÷åâèäíî, Mc = x0 + L. Òàêèì îáðàçîì, Mc åñòü ëèíåéíîå ìíîãîîáðàçèå ñ íàïðàâëÿþùèìïðîñòðàíñòâîì L êîðàçìåðíîñòè 1.
 òàêèõ ñëó÷àÿõ ëèíåéíîå ìíîãîîáðàçèå íàçûâàåòñÿãèïåðïëîñêîñòüþ. Ëåãêî âèäåòü, ÷òî îòîáðàæåíèå f (x) 7→ M (f ) = {x ∈ V : f (x) = 1}ÿâëÿåòñÿ âçàèìíî-îäíîçíà÷íûì ñîîòâåòñòâèåì ìåæäó ëèíåéíûìè ôóíêöèîíàëàìè è ãèïåðïëîñêîñòÿìè.Ïóñòü dim V = n è e1 , . . . , en áàçèñ â V .  äàííîì ñëó÷àå ÿñíî, ÷òî ëþáîé ëèíåéíûé ôóíêöèîíàë èìååò âèä f (x1 e1 + . . .
+ xn en ) = c1 x1 + . . . + cn xn , ãäå ci = f (ei ). Òàêèìîáðàçîì, ëþáàÿ ãèïåðïëîñêîñòü â n-ìåðíîì ïðîñòðàíñòâå èìååò âèäc1 x1 + . . . + cn xn = c,(∗)ãäå x1 , . . . , xn êîîðäèíàòû ðàçëîæåíèÿ âåêòîðà ïî âûáðàííîìó áàçèñó.ÄÎÏÎËÍÈÒÅËÜÍÀß ×ÀÑÒÜ26.6Îïîðíûå ãèïåðïëîñêîñòèÓðàâíåíèå ãèïåðïëîñêîñòè (∗) â Rn óäîáíî çàïèñûâàòü â âèäå(x, h) = c,ãäå h = [c1 , . .
. , cn ]> .Ãèïåðïëîñêîñòü, ïðîõîäÿùàÿ ÷åðåç òî÷êó x0 , çàäàåòñÿ óðàâíåíèåì (x, h) = (x0 , h). Ïîäñêàëÿðíûì ïðîèçâåäåíèåì çäåñü ïîíèìàåòñÿ åñòåñòâåííîå ñêàëÿðíîå ïðîèçâåäåíèå â Rn .Ïóñòü M ⊂ Rn íåêîòîðîå ìíîæåñòâî. Òî÷êà x0 ∈ M íàçûâàåòñÿ ãðàíè÷íîé äëÿ M ,åñëè â ëþáîé åå îêðåñòíîñòè èìåþòñÿ òî÷êè u ∈ M è v ∈/ M . Äëÿ îïðåäåëåííîñòè ïîäîêðåñòíîñòüþ òî÷êè ìîæíî ïîíèìàòü øàð îòíîñèòåëüíî 2-íîðìû (âàæíî, ÷òî ìåòðèêàäîëæíà ïîðîæäàòüñÿ íîðìîé, à âñå íîðìû íà Rn ýêâèâàëåíòíû).Ãèïåðïëîñêîñòü π : (x, h) = (x0 , h), ïðîõîäÿùàÿ ÷åðåç ãðàíè÷íóþ òî÷êó x0 ∈ M ,íàçûâàåòñÿ îïîðíîé ãèïåðïëîñêîñòüþ äëÿ M , åñëè (x, h) ≤ (x0 , h) ∀ x ∈ M .Çàäà÷à.Äîêàæèòå, ÷òî ìíîæåñòâî âñåõ âíóòðåííèõ òî÷åê âûïóêëîãî ìíîæåñòâà â íîðìèðîâàííîìïðîñòðàíñòâå ÿâëÿåòñÿ âûïóêëûì.Çàäà÷à.Äîêàæèòå, ÷òî ëþáàÿ âíóòðåííÿÿ òî÷êà çàìûêàíèÿ âûïóêëîãî ìíîæåñòâàìåðíîì íîðìèðîâàííîì ïðîñòðàíñòâå ïðèíàäëåæèòSâ êîíå÷íî-S .
Âåðíî ëè ýòî â ñëó÷àå ïðîèçâîëüíîãî ìíîæåñòâàS?Çàäà÷à.ÏóñòüM âûïóêëîå ìíîæåñòâî. Äîêàæèòå, ÷òî ãèïåðïëîñêîñòü, ïðîõîäÿùàÿ ÷åðåç åãîãðàíè÷íóþ òî÷êó, ÿâëÿåòñÿ îïîðíîé äëÿâíóòðåííåé òî÷êè ìíîæåñòâàMòîãäà è òîëüêî òîãäà, êîãäà îíà íå ñîäåðæèò íè îäíîéM.Ëåììà î íàèëó÷øåì ïðèáëèæåíèè íà âûïóêëîì ìíîæåñòâå. Ïóñòü M ⊂ Rn çàìêíóòîå âûïóêëîå ìíîæåñòâî.