Главная » Просмотр файлов » А.К. Боярчук, Г.П. Головач - Дифференциальные уравнения в примерах и задачах

А.К. Боярчук, Г.П. Головач - Дифференциальные уравнения в примерах и задачах (1109000), страница 56

Файл №1109000 А.К. Боярчук, Г.П. Головач - Дифференциальные уравнения в примерах и задачах (А.К. Боярчук, Г.П. Головач - Дифференциальные уравнения в примерах и задачах) 56 страницаА.К. Боярчук, Г.П. Головач - Дифференциальные уравнения в примерах и задачах (1109000) страница 562019-04-28СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 56)

3! 5! Далее, положив г = — 1 (аа — — 1, аз — — 0), из ( 1 а2 = — — а3 2' Поэтому второе частное решение имеет вид: а!и х — х из 0; 1) получаем: 1 =О а4«« —, 1 3' х' х 1 созх у,(х) = — ~1 — — + — — ...~ = —, х у О. х ) 2! 41,~ х В следующих задачах найти те решения данных уравнений, которые выражаются степенными (или обобщенными степенными) рзшами. 550. ху«+ 2у'+ *у = О. 42 поскольку функция ре — — р«(х) = х имеет в точке х = 0 нуль 1-го порядка, фунюзия рз = р,(х) = 2 нулей не имеет, а функция р, = р,(х) = х имеет в этой точке нуль 1-го порядка, то, согласно п.2.1, сузцествует по крайней мере одно нетривиальное решение данного уравнения в виде суммы обобщенного степенного ряда Гл.

5. Приблвисевиые методы решении диффереинвальиык уравнений 256 Пусть а, = О, а, = 1, Тогда из второго уравнения (1) следует, что (т + 1)(г+2) = О. Полапш, например, г = -1, из третьего уравнения (1) последовательно находим: 1 1 аз=О, аз=- — се=О аз=— 2 3' ' 5!' Таким образом 1 / х х ! з1пх уз(х)= — ~х — — + — — ...1 =, х~О. 3! 5!,1 х Если же положим г = -2, то аналогично будем иметь у4(х)= — х — — + — — ... = —, х зяб. хт ~, 2! 4! ) Итак, если х Ф О, то два линейно независимых частных решения представятся в виде: япх соя х у!(х) = —, ут(х) = —.

м х х Примечание. Можно было бы обойтись рассмотрением случал ес = 1, а| = О. 551. 9хту" — (х' — 2)у = О. а Подставляя в уравнение ряд (1) (2) Таким образом, хт х4 5 6 5 6.!1.12 2 .4 6.7 6 7 !2.13 у!(х) = х! 1 уз(х) = х! 1 Примечаиие. Рассмотрение случал ее = О, а1 = 1 приводит к такому же резулылту. 552. х'уе+ 2ху' — (ха+ 2х+ 2)у = О. М Аналогично предыдущему примеру имеем: (г +г — 2)ае = О, г(г+3)а! 2ае = О ((и+ г)(п т г+ 1) — 2)а„— а„т — 2а„~ = О, и = 2, 3,....

(1) Посколькумы ищем нетривиальные решения, то аз+а, Ф О. Следовательно, определитель первых 2 2 двух однородных уравнений должен быть равен нулю, т.е. (г — 1)г(г + 2)(г + 3) = О. Отсюда находим возможные варианты: г~ = 1, гт = О, гз = — 2, г4 = -3. у(х) = 2 а„х" я=с и приравнивая коэффициенты при одинаковых степенях х, получаем: а„(9(и+гКп+г — 1)+2) — а„, =О, и = 2, 3, ..., ае(9г' — 9г+ 2) = О, а~(9г + 9г+ 2) = О. Пусть ае — — 1, а~ = О. Тогда из первого уравнения (1) следует, что г, = у, гт = у. Подставив 1 2 в (2) сначала г = у, а затем г = у, для каждого из этих двух случаев найдем: 2 а, = —, аз' =О, аз 5 6' ' 5 6 11 12' 7~ аз ~ 4 6 7 Г2 Гу 257 Пусть г = 1, аа — — 1, тогда из указанных уравнений получаем аз — — 2, а из третьего уравнения (1) 1 последовательно находим 1 1 3 аз=-, аз= —, а4= —, 5' 20' 280 Соответстяенно зтому запишем первое частное решение: хз '4 Зхз у,(х)=х4 — + — + — + — + ....

2 5 20 280 Пусть г = -2, ас = 1, тогда аналогичным образом можем получить 1 2 а, = -1, 1 а,=-!, аз= — аз=О. 2' коэффициенты а4, аз и т. д, находим обычным способом. таким образом, второе частное решение запишется в виде: 1 1 '2 'з 7х4 У2(х) = — — — + — + — + — + — + ..., х 2 8 40 !20 Рассмотрение случаев г = 0 и г = -3 приводит к таким же результатам. Ь 553. у" + у' — ху = о.

~ Подставив ряд 2.' а„хьм в уравнение и приравняв коэффициенты при одинаковых степе=о нях х, получим: ааг =О, аз(1+г) =О, а„= " 2, и=23," (и + г)2 пуси, г = О, тогда а, = О, а коэффициент ае можем приравзшть единице. из третьего соотношения последовательно находим: ! 1 4з аз — — О, а4 22 4'з Следовательно, хз .4 х %(*) — ' 22 + 22, 42 + 22, 42, б2 Найти общее решение уравнений: 554. х'у" + ху'+ (! — х)у = О.

< Частное решение ищем в виде ряда 2.' а„х"'". Подставив ряд в уравнение, получим таз=4 жлество по х, из которого известным способом находим: ае(г +1)=0, а„=, пЕМ 1+ (и + г)2 Поскольку ае И' 0 (при аа = 0 получается тривиальное решение), то нз первого уравнения следует, что г = х1.

Пусть г = 4, аа — — 1, тогда из второго уравнения последовательно получаем: 1 1 1 1+ 24 ' 2 (1+ 24)(1+ 4) ' 12(1+ 24)(1+ 4)(З + 24) ' Поскольку при отыскании а, приходим к неопределенности б, то поступаем следующим образом. 0 Считая, что г ~ -2, из уравнений (1) находим: 2 г +Зг+4 4(г + 2) гз + Зг ' (гз + Зг)(з 2 + 5г + 4) ' (гз + Зг)(г + 5г + 4)(з' + 5) Озсюда, устремив г — -2, получим: 25В Гл. 5. Приближенные ме~щм решения двКмреипиальиых уравнеивй Таким образом, частные решения имеют внд: х > ! -~ 2в 4(! + 2в)(! + в) 12(1 + 2в)(1 + в)(3 + 2в) ув(х)=х 1+,+,, + +...~, х х' ув(х)=х' 1+ .+, + +...

1 — 2в' 4(1 — 2в)(1 — в) 12(1 — 2в)(1 — в)(3 — 2в) Общее же решение у = Свув(х) + Свув(х) = С,(и 4- ви) Х Сз(и — ви) = аи + Ьи тле а = С, + Св, Ь = !(С, — Сз). Функшвн и, и легко получить из представления у,(х), если воспользоваться йюрмулами Эйлера.

Имеем: х, х в — 31 з у,(х) = и(х) + ви(х) = евьв 1+ — (1 — 2в) — — (1+ Зв) + — ! в' — — 1 + ... 5 40 520 г 2/ х х Зх ( 2х Зхз х -1-""'"-"')("---'- — ' -( — --' -' ))= 5 40 1040 [, 5 40 520 Зхз /л 3' — !+ — — — — — + ...)соз(1пх)+ ~ — + — — — + ... з!п((пх)-~- 5 40 1040 / ~ 5 40 520 х х Зх' )'2х Зхз хз + в' 1+ — — — — — -+ ...в з!и(!па) — — + — — — + ... саз(!ох) 5 40 1040 / (т 5 40 520 Следовательно, и(х) = о(х) соз(!и х) +,9(х) звп(!и х), е(х) = а(х) звп(!л х) —;9(х) соз(!» х), х х Зх 2х Зев х' о(х) = 1+ — — — — + ..., 13(х) = — + — — — + .... > 5 40 1040 ' 5 40 520 555.

'Уо+(3 — Пу'+У=О. М Будем искать частное решение в виде у(х) = 2 а„(х — хо) . Тогда вшя коэффициентов а„способом, изложенным в примере 539, получим: (1 — Зхо)а в — ао 1 г г зт ав = в аз = —, (ив (1 — Зхо + 11хо) — а,(1 — 5хо)), ... 2 хо ' бхов Коэффициенты ао, а, произвольны, хо ~ О. Если хо —— О, то решение ищем в виде обобщенного степенного ряда у(х) =(ао+авх+азо + ...)х'. Подставив ряа в уравнение и приравняв коэффициенты прн соответствующих степенях *, найдем (и+ а)(и+а+ 2)+ 1 аао = О, а„вв —— а„(п = О, 1, 2,...).

(1) а + п + 1 В силу того, что мы ищем нетривиальное решение, следует положить а = О. Пуси ао — — 1, тогда из (1) последовательно определяем аз=2!, а,=1, аз — 3,, а„— л., Следовательно, У(х) = 1 + 1! х + 2! х + ... + и! х" + Очевидно, что этот ряд сходпгсв лишь в точке х = О, ы $2. Аналитические ирнблвлгеииме меняя 259 гг 4 соз(2я — 1)х 2 х „, (2я — 1)2 В силу равенства г'(х+ 2х) = 1(х) ггх е (-со, +со) гг 4 соз Л„х г(х) = — — — ) -, Л„= 2п — 1.

2 х„, Л„ Далее, приняв во внимание 2а-перноличность функции у, решение ищем также в виде 2хпериодической функции у: о» У(х) = †.1. ~аосозйх+ Ьо ого йх. 2 уравнение и приравнивая коэффициенты при функциях х »-» яп йх, Подставляя этот ряд в соо гох, имеем: 1 аго-2 21 1 г йг а„=ь,=о, йбР[. х(2й 1)г(йг й 1 П' л ао = —— 3' Следовательно, гг 1 соз(2й — 1)х у(х) = — — + — ~, . Э» б а „, (2й — 1)' 2япх ° У У У= 5 — 4 сот х я Очевидно, функция 2о!Пг: /(х) = 5 — 4соох 2а.-периодическая, поэтому частное периодическое решение уравнения ищем в виде ао у(х) = — +~,аосоойх+Ьояпйх. 2 о=! Подсявив этот ряд в уравнение и приняв во внимание, что функция у нечетная, получим 2япх ао = О аотйо(й +й) = О, ) соо)пйх =, со =(й йй)ао-Ьк, й Е Ь( 5 — 4соох' Умножив тождество на 5 — 4 сов х, представим его в виде: »Ю 5~ сояпйх — 2~ со гяпйх — 2~ сьм япйх = 2япх.

ою 2=2 о=о Отсюда, приравнивая коэффициенты при одинаковых функциях, находим 5сг — 2сг — — 2, 5со — 2со 2 — 2соог = О, й =2, 3, ... Из второго уравнения (2) слсаует (2) со — -а2 + —, )5 (3) где а,,0 — произвольные постоянные. Использовав первое уравнение (2), получим а +,0 = 1.

Решив систему уравнений (1), (3), будем иметь: 2 а2'+(1 — а)2" а2" +(1 — а)2 о ао (й +й) 1, (12 й)г Ьо = — 1+(йг+1)2 В следующих задачах найти в виде тригонометрических рядов периодические решения данных уравнений: 55б. у" — 3У = ~(х), 1(х) = [х[ при [х[ < х, ~(х + 22г) я ~(х). я Поскольку функция у при [х[ < гг непрерывна, дифференцируема при О < [х[ < гг, у(к) = г"(-х), то она разлагается в равномерно сходящийся к ней в каждой точке х е [ — гг, гг) тригонометрический рял Фурье 260 Гл. 5. Приближеннме методы решения шофферевцвальиых уравнений Поскольку ао — О, Ьо -+ 0 при й -1 +со, то в посзидних соотношениях следует положить а = О.

Итак, окончательно имеем: йз+й 24(1+(рз+!>2)' " 22(!+(>з+1>2)' (йз+ й)соз1ох —.мпйх У(х) = 2 Ф ~ 2 (1+(» +й)2) ип 2»х уо — Зу — 52 = ~ 558. зо+ бу+ 82 = ~ 2=1 Л Поскольку правые части являются зг-периодическими функциями, то периодические ре- шения у(х), з(х) ищем с тем же периодом в виде 44 у(х) = — + 2 аосоз 2!ох+ Ьо ып2йх, 2 з(х) = — + 2 сосоо2йх+ 1!го!о 2йх. со 1=1 Подставив написанные ряды в уравнения и приравняв коэффициенты при одинаковых функциях, получаем: (4» + 3)ао+ 5со = О, — (4» +3)Ьо — 541 — — —, О »24 (8 — 4й )со + бао — —, (8 — 4» )4» + 6Ьо = О, ао = со = О, откуда находим 4 — 2»' йг(8йо — 10йг + 3) 3 йг(8»4 — !Ойг + 3)' 5 2йг(8й4 10йг+ 3)' 3+ 4й 2йг(8»4 — 10»г + 3) Таким образом, 5 соз 2»х + 4 (2 — йг) Мп 2йх 2!42(8»4 — 10»2 + 3> (3+ 4йг) соз2»х+ 6 ив 2йх 2(х>=-~— 2»2(8»4 !О»2+ 3) В задачах 559-562 найти 2 — 3 члена разложения решения по степеням малого параметра р.

559. у' = 4рх — у', у(1> = 1. ч Поскольку правая часп аналитична по у, д, то, согласно п.2.2 решение ищем в вице У(х >4) = Уо(х)+Руз(х)+>з Уг(х)+" Подставив ряд в уравнение и приравняв коэффициенты при одинаковых степенях р, получаем з 2 4 г г Уо = -Уо, Уз = 4х — 2рорн Уг = — Уз — 2Уоугз (!) Приняв во внимание начальное условие, имеем: уо(1) 1 уз(1) — О У2(1) О (2) Теперь последовательно решаем рекуррентную систему (1), используя начальные условия (2); 1 г ! х 2х 1 32 уо(х) = -4 уз(х) = х — — 3 у2(х) = — — + — + — — — 2, х' ' хг' 7 3 хз 21хг 2б1 й 2.

Авалатвчесвие пргоблимеивые метены 1 !г 1г г/ х 2х 32 ! у(х) ро + Р ~х — — ) + Р— — + — — — + — + .. х г, хг) ~ 7 3 2!хг хг) Уо(!) = ! Уг(!) = Уг(1) = Последовательно интегрируя уравнения (2) и пользуясь условиями (3), накопим: г У1 = х — х, уг = — (! — х), б Наконец, подставляя (4) в (1)„приходим к решению поставленной задачи: у(х, Р) =1+ Р(х' — х) + Р'- (1 — х)'+ .... Ь б (3) (4) 561.

Характеристики

Тип файла
DJVU-файл
Размер
3,39 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6418
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее