А.К. Боярчук, Г.П. Головач - Дифференциальные уравнения в примерах и задачах (1109000), страница 53
Текст из файла (страница 53)
Поскольку В < Лг, то оно существует и в 21. М Найти производные по параметру или по начальным условиям от решений след)лощих задач; 529. у' = у+ р(х+ у'), у(0) = 1; найти — < а(г!»=о и Дифференцируя по параметру р тождества у,'(х, )г)»н у(х, (г) + )г ( х + у'(х, )г)), у(о,,и) = 1, имеем о(и г — = и+ х+ у (х, р) + 2)гу(х, р)и, и(0, р) = О, дх 'где и = -"у-'-д-. Полагая здесь,и = О, получаем задачу для функции уй< = и(х, 0): д(х ) д ди(х, 0) 2 = и(х, О)+ х+ у (х, 0), и(0, 0) = О. Функция х» у(х, 0) является решением задачи: у(х,о)=у(х,о), у(О,О)=1, что непосредственно следует из данной задачи лри р = О.
Поскольку у(х, О) = е*, то, решая задачу (1), получаем окончательно и(х, 0)= — < =е — х — 1. а» ду! м а(г „=о 530* у' = у+ у + ху, у(2) = уо,' найти — ! г з ду дуо о-,=о и Пусть у = у(х уо) — решение данной задачи. Тогда, дифференцируя тождества У*(х, Уо) — = У(х» Уо) + У (х~ Уо)+ ху (х1 Уо)~ У(2, Уо) = Уо по параметру уо, имеем: ди(х, уо) = и(х, уо) + 2у(х, уо)и(х, уо) + Зху'(х, уо)и(х, уо), дх и(2, 0)=1, и(х, уо)= ду(х, уо) дуо П олагая здесь уо — — О, получаем задачу для функции х» дд-< д ди(х, 0) 2 = и(х, 0) + 2У(х, 0)и(х, 0) + Зху (х, 0)и(х, 0), дх и(2, 0) = 1, где у(х, 0) — решение следующей задачи: у',(х,о) =у(х, 0)+у (х, 0)+ху (х, 0), у(2, 0) =О. Очевидно, у(х, 0) гв О, поэтому задача (1) принимает внд: аи(х, О) =и(х, 0), и(2,0)=1.
Отсюда находим и(х, 0) = е* ~. Итак, — =и(х,о)=е . ° ау! дуо „о Гл. 5. Прыблвкеивме мхпщм рввеввя двффизевциальвык ураоаевий з 531. — = х +Сага, х(О) =(+Со;найти — ! ' гй д)з!„= ' ° а Дифференцированием по Сз из данной задачи получаем задачу для функции и(С, Сг) = де(С р) дд (2) откуда 1 — С вЂ” 1п(1 — С) (1 — С)з Таким образом, дх ~ 1 — С вЂ” 1п(1 — С) — = и(С, 0) = д)з о=а П П ~Зг. С '.='У+' ' ( 2у=-у', х(1) = хо,, дх у(1)=у' д о и=2 < Дифференцируя по параметру уа каждое равенство данной задачи, имеем. ди(С, хо, уа) = х(С, ха, уа)е(С, хо, уо)+ и(С, хо уо)у(С хо уо) и(1, хо, уо) = О, де(С, хо, уо) 2 ' ' = -2У(С, хо. Уо)е(С хоо уо) дС е(1~ хо~ уо) = 11 где введены обозначения: дх(С, хо, Уо) дУ(С, хо> Уо) и(С, хо, Уа) = ' ', е(С, х,„у,) = дуо ' ' " дуа Функции х, у являются решениями исходной задачи.
Полагая в ней хо = 3, уа = 2 и интегрируя соответствуюШие уравнения, получаем: х(1,3,2)=С +21', у(1,3,2)= —. С Подставляя в (1) найденные функции, а таске хо = 3, уо — — 2, имеем: ди(132) з зз 2 = (С + 2С 11е(С, 3, 2) + — и(С, 3, 2), и(1, 3, 2) = О, де(С, 3, 2) 2 дС С = — -е(С 3 2) е(1, 3, 2) = 1. (2) ди(С Сз) з з =С(х + Зх Сзи(С, Сз)) +2хи(С, д), и(0, д) = 1. Положив здесь Сз = О, имеем: ди(С, О) — = Се~(С, 0)+2х(С, 0)и(С, О), и(0, О) = 1, где функция С з- х(С, 0) является решением задачи: дх(С, 0) з гй =х(С,О), х(0,0)=1, получающейся из исходной при Сз = О. Из (2) находим х(С, О) = Т-'-Т. Подставив х(С, 0) в (1), полушем задачу для искомой функции: ди(С, 0) С 2и(С, 0) дС (1 — С)з 1- С 245 $1.
Заввсвмость решения от вачальвых условий и параметров Из второго уравнения системы (2) находим: е(1, 3, 2) = —. 1 Подставив е(1, 3, 2) в первое уравнение системы (2), после интегрирования имеем: и(1, 3, 2) = ! 1п! — 2!+ 2! . Следовательно, — =! 1п! — 21+2!.м дх! г г ду„* =з г;г ~зз.~ *.=*'", ®="" - — '"( ' ( у =2х+(гу', у(О) =-2; д,и „о м С помощью дифференцирования кюкдого равенства данной задачи по параметру р и по- следующей подстановки д = 0 получаем: г(и(1, О) = и(1, 0) + е(1, 0), и(0, 0) = 1, де(1, 0) = 2и(1, 0)+уз(1, 0), е(0, 0) = О, где и((,,и) = — о,", Я, е((,,и) = — аь..
Функцию у((, 0) находим из задачи: х(1, О) = а(1, О) + у(1, 0), х(0, 0) = 1, у(1, О) = 2х(1, 0), у(О, О) = -2, которая получается из данной при (г = О. Подставив х(1, 0) = —,'у(1, О) в первое уравнение, имеем задачу: у(1, 0) — у(1, 0) — 211(1, О) =О, у(0, 0) = -2, у(0, 0) = 2, из которой находим у(г, О) = — 2е '. Используя этот результат, из системы (1) методом исключе- ния получаем задачу: У(1, О) — 6(1, 0) — 2е(1, 0) = — 12е з', е(0, О) = О, б(0, 0) = б, решение которой имеет вил: е(1, 0) = 2е ' + е" — Зе г . Это и есть искомое решение.
М г г дх~ 534. х — х = (х + 1) — рх; х(0) = —, х(0) = — 1; найти— и Дифференцируя равенства данной задачи и полагая затем в кюкдом из них р = 1, получаем: г(ти(1, !) ди(1, 1) г(и(1, 1) дтг — — — 2и=-х~(! 1) и(0 1)=0 ' =О, гй Ф \ > 1! ~=а где и(1, р) = — ф —.
Функция ! ~-~ х(1, 1) является решением задачи: дхн. е) огх(1, 1) г(х(1, 1) 1 — = 2х(1, 1)+ 1, х(0, 1) = —, х(0, !) = — 1, которую можно получить из данной цри (г = 1. Решив последнюю задачу, имеем: 1 х(1, 1) = е Учитывая зто решение, задачу (1) представляем в виде: й(С, 1) — и(1, 1) — 2и(1, 1) = — (е — -71, и(0, 1) = й(0, 1) = О. г -г Наконец, интегрируя последнее уравнение и используя начальные условия, получаем: дх! 1 ! 25 !'г 1 и 1 и(1, 1) = — ~ = — +е ~ — — -'г! — — е — — е . !ь д)г!„ю 8 ~Зб 3/ 4 72 24б Гл.
5. Приблшкеинме методы решения диффереицвальиык уравнений 535. Оценить, насколько может измениться при О ( х < 1 решение уравнения у' = х+ яп у с начальным условием у(0) = у, = О, если число уа изменить меньше, чем на 0,01. и Пользуемся неравенством (4), п. 1.!. В данном примере в = О, так как сравнивяотся между собой решения у(х) и в(х) одного и того же уравнения, т. е. у' = х + яп у, в' = х+ яп в, где решение у(х) удовлетворяет начальному условию уо — — О, а решение в(х) — условию в(0) = во, для которого, согласно условию, справедлива оценка )уа — га! ( 0,01, или )во( ( 0,01. Следовательно, по формуле (3), п.!.1, 6 = 0,01. Далее, так как ! яп у — о!ив! < )у- в(, то постоянная Липшица К = 1, и, согласно оценке (4), и. 1.
1, имеем окончательно: 1у(х) — в(х)! ( 0,01еи! ( 0,01е щ 0,0271, я 536. Чтобы приближенно найти решение уравнения х+ яп х = О, его заменили уравнением х + х = О. Оценить при 0 ( ! ( 2 возникающую ог этого погрешносп в решении с начальными условиями х(0) = 0,25, й(0) = О, если известно, что !х — в(их! ( 0,003 при (х! ( 0,25. и Пусть у(!) — решение задачи у+ яп у = О, у(0) = 0,25, у(0) = О, (1) а х(1) — решение задачи: х+ х = О, х(0) = 0,25, х(0) = О. (2) Тогда для погрешности н(1) = х(1) — у(!) путем почленного вычитания из равенств (1) равенств (2) получаем задачу: й(!) + и(!) = з(ну — у, и(0) = О, и(0) = О, решение которой имеет вид: и(!) = ( (вш у(т) — у(т)) яп(! — т)г(т.
(3) а Умножив почленно уравнение (!) на у и проинтегрировав, а также приняв во внимание начальные условия, получим: у' = 2(сову — сов 0,25). Отсюда следует, что (у(( 0,25. Поэтому !япу — у! < 0,003, и из (3) находим ну~кнуго задачу: 1 з !п(1)! ( / /а1пу(т) — у(т)! !яп(! — тиг(т ( 0 003 / !з!п(! — т)! ят ( 0 003 / ат = 0 006, в 5 2. Аналитические приближенные методы 2.1. Метод отененных рядов.
Если коэффициенты ра(х), р~(х), рз(х) лифференциального уравнения ра(х) уо + р, (х)у + р,(х) у = 0 (1) в окрестности точки х = хо яютяются аналитическими функциями, т.е. разлагающимися в ряд по степеням х — хо, и ро(ха) Ф О, то решения этого уравнения в некоторой окрестности указанной точки также аналитичны. Если же точка ь = хо является в-кратным нулем функции р„ в — 1-кратлым (или выше) нулем функции р, (если в > 1) и в — 2-кратным (нли выше) нулем функции р, (если в > 2), то существует по крайней мере одно нетривиальное решение уравнения (1) в ниле суммы обобщенного степенного ряда у(х) = (х — хо)' ~ ' а„(х — хо)", «=а где т — некоторое число.
Если функция у является аналитической в окрестности точки (хо, уо), то решение задачи У = У(» У) У(хо) = Уа б 2. Аналитические иряблшкевиые метолы 247 также является аналитической функцией в окрестности точки х = хо. Аналогично, если функция 7 =~~~х, у, у', ..., у " ) является аналитической в окрестности точки (хо, ум уо,, уо ), то (ой / о (о-(К) сущ вует решение задачи Ум' = 1, У(хо) = Уо, У'(хо) = Уо, ", Уго н(хо) = Уо" ' в виде ряда по степеням (х-хо). Для отыскания коэффициентов ряда часто используется формула Тейлора.
22. Метод малого параметра. Если в задаче (Сх, — = ~,(С, х(, хк, ..., х„, д), х,(Со) = а((д) к = 1, и, (2) фя(клин 3(, а, являются аналитическими по совокупности переменных х„х„..., х„д, то вектор-решение ее х(С, д) разлагается в сходящийся при малых значениях д (л(алых по сравнению с единицей, т. е. ф « 1) степенной ряд по Сц х(С д) = Уо(С) +ду((С) + С( Уз(С) + (3) Для того чтобы найти функции у„у„..., следует разложить правые части в задаче (2) по степеням д и, подставив туда разложение (3), приравнять коэффициенты при одинаковых степенях д.