part5 (1106114), страница 9

Файл №1106114 part5 (Куприянов А.К. - Лекции по курсу общей физики для географического факультета) 9 страницаpart5 (1106114) страница 92019-04-28СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 9)

Лекция 8 Переменный ток.

§ 8 - 1 Получение переменного тока.

Переменнвм током называется ток, направление которого периодичемки изменяется с течением времени. Основным устройством, которое используется для получения перемен-

Рис.28. Схема устройства электро-

генератора.

ного тока, служит электрогенератор. Его дей-ствие основано на явлении электромагнитной индукции. Схема, поясняющая принцип ус-тройства электрогенератора, изображена на рис.28. Прямоугольная рамка помещается в зазор между полюсами магнита N и S так, что она может вращаться вокруг оси, проходящей через ее середину.Т.к. величины вектора маг-нитной индуцкии и площади рамки остаются постоянными, величина ЭДС электромагнит-

ной индукции (см. прошлую лекцию) определяется выражением

E = - ,

где  - угол между направлением магнитного поля В и нормалью к площади рамки S. На-правление тока в рамке в выбранный момент времени определяется по правилу правой руки. Нетрудно видеть, что направление токов в верхнем и нижнем проводниках противо-положны друг другу. Концы рамки подключаются к кольцам, которые, в свою очередь, с помощью скользящих контактов подсоединены к выходным клеммам генератора. В мощных генераторах рамка содержит несколько десятков или сотен витков, токи в ней достигают значительной величины, поэтому сама рамка делается неподвижной, чтобы избе-жать трущихся контактов, а магнитная система вращается вокруг рамки. Частота вращения является госудаоственным стандартом: в США это 60Гц , в Росси –50 Гц.

§ 8 –2 Квазистационарные токи.

Квазистационарным называется переменный ток, для которого в любой омент времени оказывается справедливым закон Ома, сформулированный ранее для постоянного тока. Это означает, что в неразветвленных цепях сила тока, проходящего через любой элемент цепи, в данный момент времени одинакова для всех элементов. Неквазистационарными токи становятся тогда, когда частота колебаний достигает очень больших значений – таких, что соответствующая им длина волны  = сТ, где с –скорость света, а Т –период колебаний, становится сравнимой с геометрическими размерами цепи. Например, для промышленного тока 50 Гц эта длина волны равна 6000 км.

В прошлом семестре было показано, что на длине волны амплитуды колебаний в разных точках пространства различны, изменяясь от максимума до нуля и нооборот через каждые /4. Поэтому мгновеннве значения ока будут одинаковы тогда, когда  l , где l – длина цепи.

§ 8 –3 Закон Ома для переменного тока.

Рассмотрим цепь, состоящую из омического соп-ротивления, катушки индуктивности и конденса-тора. Пусть все они соеденены друг с другом пос-ледовательно и подключены к источнику перемен-ного тока с ЭДС E (см. рис. 29). Формально эта цепь разомкнута, и ее концами являются обкладки конденсатора, поэтому длч нее можно написать закон Ома для участка цепи, содержащей ЭДС, по-

лагая, что условие квазистационарности выполнено. Тогда

Ek , ( ХХ)

где = UC - напряжение на конденсаторе, а суммарная ЭДС складывается из ЭДС источника тока и ЭДС самоиндукции EL :

Ek = EL + E (t), EL = - .

Обычно величину называют падением напряжения на индуктивности и обозна-чают UL , т.е. UL= , произведение IR =UR –падением напряжения на сопротивлении. С учетом этого уравнение (ХХ) можно преобразовать:

UR + UL + UC = E (t). (ХХХ)

Вспоминая, что и заменяя величины UC и UL , получим

E (t). ()

Предположим, что ток в нашей цепи изменяется по синусоидальному закону: I = I0 sint.

Тогда UR = I0R sint , UL = LI0 cost = LI0 sin(t -/2),

= .

Эти соотношения должны быть спаведливыми в любой момент времени, поэтому они спра-ведливы и для амплитудных значений, т.е.
.

Трактуя эти равенства как закон Ома для участка цепи, можно заметить, что величины ZL =L и ZC = аналогичны по своему значению сопротивлению R. Используя такую

интерпретацию, можно видеть, что уравнение () приобретает тригонометрический смысл: напряжения на емкости и индуктивности оказываются сдвинутыми по фазе на /2 относительно напряжения на сопротивлении R. Здесь удобнее использовать векторное представление колебаний, которое рассматривалось в прошлом семестре. Любое гармо-ническое колебание y(t) = Asin( t + ) можно представить в векторном виде: длина вектора определяется амплитудой колебаний А, начальная фаза определяет угол отклонения вектора от горизональной оси, а  - частоту, с которой вектор вращается вокруг начала координат. В этом представлении напряжение на сопротивлении R изображается в виде горизонтально-

Рис.30. Векторная диаграмма

для последовательной цепи.

го вектора (см. рис.30), а напряжения на емкости и индуктивности оказываются повернутыми относи-тельно него в разные стороны на 900 . В последова-тельной цепи действующее в ней общее напряжение складывается из падения напряжений на всех участ-ках. Поэтому оно может быть найдено как геомет-рическая сумма падения напряжений на индуктив-ности, емкости и сопротивления. Тогда согласно тео-реме Пифагора можно записать, что

,

или, выражая UR , UL и UC через произведения тока на соответствующие сопротивления,

.

Извлекая квадратный корень из обеих частей последнего равенства, получим:

. ()

При выводе этого выражения учтено, что для последовательной цепи IR = IL= IC =I. Полученное выражение по своей структуре аналогично закону Ома для цепи постоянного тока. Поэтому оно называется законом Ома для переменного тока. Важно отметить, что между током и напряжением существует сдвиг фаз, величина которого определяется из рис.30:

или .

§ 8 – 4 Мощность переменного тока.

Значение мгновенной мощности W определим по аналогии с законом Джоуля – Ленца для постоянного тока: W =IU = I0U0 sint sin(t +). Однако, с практической точки зрения более полезно вычислить среднюю мощность за единицу времени. Определим среднее значение за время одного колебания любой переменной величины y(t) как интеграл, средний за период: . Тогда =

=

+ = - +

+ .

Интегралы в последнем выражении все равны нулю, т.к. среднее значение за период лю-бой периодической величины равно нулю.Поэтому , где Uэфф= ; Iэфф = - так называемые эффективные значения напряжения и тока.

Формула мощности для переменного тока отличается от аналогичной формулы для постоянного тока лишь коэффициентом cos , который принято называть коэффициентом мощности. Увеличение этого коэффициента является важной практической задачей. Там, где сдвиг фаз между током и напряжением достигает 900 , средняя мощность оказывается равной нулю.

Лекция 9 Колебательный контур. . § 9 –1 Затухающие колебания в колебательном контуре.

Рассмотрим последовательную цепь, содержащую катушку индуктивности L, ем-кость С, сопротивление R и ключ. Предположим, что на емкости в начальный момент вре-мени имеется некоторый заряд . Если цепь замыкается, то в цепи возникает электрический ток. Наличие катушки индуктивности обуславливает возникновение ЭДС самоиндукции, которая своим действием препятствует возрастанию разрядного тока конденсатора. В тот момент, когда напряжение на конденсаторе становится равным нулю, ток через индуктив-ность достигает максимума. В дальнейшем ЭДС самоиндукции стремится поддержать этот ток, что приводит к перезарядке конденсатора до некоторого напряжения обратной поляр-ности. Процесс перезарядки конденсатора повторяется определенное число раз в зави-симости от величины потерь энергии на сопротивлении. Способность контура к переза-рядке характеризуется качеством контура или добротностью. Добротность контура Q опре-деляется отношением энергии, запасенной на конденсаторе или в катушке индуктивности, к величине потерь энергии на сопротивлении за период:

Для количественного описания процессов в последовательном колебательном кон-туре используется уравнение, полученное ранее при рассмотрении переменного тока:

E (t), ( ++)

с той разницей, что в нашем случае внешняя ЭДС отсутствует так, что уравнение прини-мает вид:

0.

Введем обозначения : ;  = и учтем, что по опеределению I= .Тогда наше уравнение принимает вид, знакомый по курсу прошлого семестра:

где в качестве переменной выступает заряд q. Решением этого дифференциального урав-нения служит функция q(t) = q0 e -t cos(t + ), где величины q0 и  определяются началь-ными условиями , а 2 = с учетом того, что в большинстве случаев 0 . Очевидно, что при  = 0 колебания в контуре становятся незатухающими, и частота этих колебаний равна . Добротность контура Q может быть выражена через его пара-метры. Энергия, запасенная в индуктивности, равна L /2., а мощность, выделяемая на сопротив-лении, - /2. За период Т = на сопротивлении выделится энергия R T/2 =  . Поэтому Q = 2 .

Как видно из полусенного выражения, величина добротности определяется лишь парамет-рами контура L,C и R.

§ 9 –2 Вынужденные колебания в контуре. Резонанс.

Включим в цепь рассматриваемого контура внешнюю переменную ЭДС E = E0 sin(t+).

Характеристики

Тип файла
Документ
Размер
4 Mb
Тип материала
Предмет
Высшее учебное заведение

Список файлов лекций

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6314
Авторов
на СтудИзбе
312
Средний доход
с одного платного файла
Обучение Подробнее