part5 (1106114), страница 9
Текст из файла (страница 9)
Лекция 8 Переменный ток.
§ 8 - 1 Получение переменного тока.
Переменнвм током называется ток, направление которого периодичемки изменяется с течением времени. Основным устройством, которое используется для получения перемен-
где - угол между направлением магнитного поля В и нормалью к площади рамки S. На-правление тока в рамке в выбранный момент времени определяется по правилу правой руки. Нетрудно видеть, что направление токов в верхнем и нижнем проводниках противо-положны друг другу. Концы рамки подключаются к кольцам, которые, в свою очередь, с помощью скользящих контактов подсоединены к выходным клеммам генератора. В мощных генераторах рамка содержит несколько десятков или сотен витков, токи в ней достигают значительной величины, поэтому сама рамка делается неподвижной, чтобы избе-жать трущихся контактов, а магнитная система вращается вокруг рамки. Частота вращения является госудаоственным стандартом: в США это 60Гц , в Росси –50 Гц.
§ 8 –2 Квазистационарные токи.
Квазистационарным называется переменный ток, для которого в любой омент времени оказывается справедливым закон Ома, сформулированный ранее для постоянного тока. Это означает, что в неразветвленных цепях сила тока, проходящего через любой элемент цепи, в данный момент времени одинакова для всех элементов. Неквазистационарными токи становятся тогда, когда частота колебаний достигает очень больших значений – таких, что соответствующая им длина волны = сТ, где с –скорость света, а Т –период колебаний, становится сравнимой с геометрическими размерами цепи. Например, для промышленного тока 50 Гц эта длина волны равна 6000 км.
В прошлом семестре было показано, что на длине волны амплитуды колебаний в разных точках пространства различны, изменяясь от максимума до нуля и нооборот через каждые /4. Поэтому мгновеннве значения ока будут одинаковы тогда, когда l , где l – длина цепи.
лагая, что условие квазистационарности выполнено. Тогда
где = UC - напряжение на конденсаторе, а суммарная ЭДС складывается из ЭДС источника тока и ЭДС самоиндукции EL :
Обычно величину называют падением напряжения на индуктивности и обозна-чают UL , т.е. UL=
, произведение IR =UR –падением напряжения на сопротивлении. С учетом этого уравнение (ХХ) можно преобразовать:
UR + UL + UC = E (t). (ХХХ)
Вспоминая, что и заменяя величины UC и UL , получим
Предположим, что ток в нашей цепи изменяется по синусоидальному закону: I = I0 sint.
Тогда UR = I0R sint , UL = LI0 cost = LI0 sin(t -/2),
Эти соотношения должны быть спаведливыми в любой момент времени, поэтому они спра-ведливы и для амплитудных значений, т.е.
.
Трактуя эти равенства как закон Ома для участка цепи, можно заметить, что величины ZL =L и ZC = аналогичны по своему значению сопротивлению R. Используя такую
интерпретацию, можно видеть, что уравнение () приобретает тригонометрический смысл: напряжения на емкости и индуктивности оказываются сдвинутыми по фазе на /2 относительно напряжения на сопротивлении R. Здесь удобнее использовать векторное представление колебаний, которое рассматривалось в прошлом семестре. Любое гармо-ническое колебание y(t) = Asin( t + ) можно представить в векторном виде: длина вектора определяется амплитудой колебаний А, начальная фаза определяет угол отклонения вектора от горизональной оси, а - частоту, с которой вектор вращается вокруг начала координат. В этом представлении напряжение на сопротивлении R изображается в виде горизонтально-
или, выражая UR , UL и UC через произведения тока на соответствующие сопротивления,
Извлекая квадратный корень из обеих частей последнего равенства, получим:
При выводе этого выражения учтено, что для последовательной цепи IR = IL= IC =I. Полученное выражение по своей структуре аналогично закону Ома для цепи постоянного тока. Поэтому оно называется законом Ома для переменного тока. Важно отметить, что между током и напряжением существует сдвиг фаз, величина которого определяется из рис.30:
§ 8 – 4 Мощность переменного тока.
Значение мгновенной мощности W определим по аналогии с законом Джоуля – Ленца для постоянного тока: W =IU = I0U0 sint sin(t +). Однако, с практической точки зрения более полезно вычислить среднюю мощность за единицу времени. Определим среднее значение за время одного колебания любой переменной величины y(t) как интеграл, средний за период: . Тогда
=
Интегралы в последнем выражении все равны нулю, т.к. среднее значение за период лю-бой периодической величины равно нулю.Поэтому , где Uэфф=
; Iэфф =
- так называемые эффективные значения напряжения и тока.
Формула мощности для переменного тока отличается от аналогичной формулы для постоянного тока лишь коэффициентом cos , который принято называть коэффициентом мощности. Увеличение этого коэффициента является важной практической задачей. Там, где сдвиг фаз между током и напряжением достигает 900 , средняя мощность оказывается равной нулю.
Лекция 9 Колебательный контур. . § 9 –1 Затухающие колебания в колебательном контуре.
Рассмотрим последовательную цепь, содержащую катушку индуктивности L, ем-кость С, сопротивление R и ключ. Предположим, что на емкости в начальный момент вре-мени имеется некоторый заряд . Если цепь замыкается, то в цепи возникает электрический ток. Наличие катушки индуктивности обуславливает возникновение ЭДС самоиндукции, которая своим действием препятствует возрастанию разрядного тока конденсатора. В тот момент, когда напряжение на конденсаторе становится равным нулю, ток через индуктив-ность достигает максимума. В дальнейшем ЭДС самоиндукции стремится поддержать этот ток, что приводит к перезарядке конденсатора до некоторого напряжения обратной поляр-ности. Процесс перезарядки конденсатора повторяется определенное число раз в зави-симости от величины потерь энергии на сопротивлении. Способность контура к переза-рядке характеризуется качеством контура или добротностью. Добротность контура Q опре-деляется отношением энергии, запасенной на конденсаторе или в катушке индуктивности, к величине потерь энергии на сопротивлении за период:
Для количественного описания процессов в последовательном колебательном кон-туре используется уравнение, полученное ранее при рассмотрении переменного тока:
с той разницей, что в нашем случае внешняя ЭДС отсутствует так, что уравнение прини-мает вид:
Введем обозначения : ; =
и учтем, что по опеределению I=
.Тогда наше уравнение принимает вид, знакомый по курсу прошлого семестра:
где в качестве переменной выступает заряд q. Решением этого дифференциального урав-нения служит функция q(t) = q0 e -t cos(t + ), где величины q0 и определяются началь-ными условиями , а 2 =
с учетом того, что в большинстве случаев 0 . Очевидно, что при = 0 колебания в контуре становятся незатухающими, и частота этих колебаний равна
. Добротность контура Q может быть выражена через его пара-метры. Энергия, запасенная в индуктивности, равна L
/2., а мощность, выделяемая на сопротив-лении, -
/2. За период Т =
на сопротивлении выделится энергия R
T/2 =
. Поэтому Q = 2
.
Как видно из полусенного выражения, величина добротности определяется лишь парамет-рами контура L,C и R.
§ 9 –2 Вынужденные колебания в контуре. Резонанс.
Включим в цепь рассматриваемого контура внешнюю переменную ЭДС E = E0 sin(t+).