part5 (1106114), страница 6

Файл №1106114 part5 (Куприянов А.К. - Лекции по курсу общей физики для географического факультета) 6 страницаpart5 (1106114) страница 62019-04-28СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 6)

§ 4-5 Зависимость проводимости материалов от температуры.

Из рассмотрения проводимости металлов следует, что их сопротивление обусловле-но взаимодействием носителей с колеблющимися ионами. Поскольку с повышением температуры амплитуда тепловых колебаний увеличивается, и носители начинают чаще сталкиваться с ними, можно сделать заключение о том, что с повышением температуры сопротивление проводников должно увеличиваться. Для полупроводников же картина обратная – чем выше температура, тем больше носителей, т.е. сопротивление полупро-водников падает с повышением температуры.

С понижеитем температуры сопротивление проводников должно уменьшаться, достигая минимума при абсолютном нуле. Однако в действительности при низких, но конечных температурах сопротивление некоторых металлов скачком падает до нуля. Это явление было открыто в 1911 г и получило название сверхпроводимости. Долгое время для его наблюдения требовались температуры, близкие к температуре жидкого гелия, и лишь срав-нительно недавно удалось повысить температуру сверхпроводящего перехода до значения 90-100 К. Сверхпроводимость стало возможным наблюдать при температуре жидкого азота. Природа возникновения сверхпроводимости может быть объяснена только в рамках кванто-вой теории.

§ 4-6 Правила Кирхгофа.

Для расчета сложных электрических цепей немецким ученым Кирхгофом были сформулированы эмпирические правила. Первое из них утверждает, чтодля любого узла электрической цепи сумма токов, входящих и выходящих из него, равна нулю.При этом то-

Рис.16. К правилам Кирхгофа.

кам приписывается определеннный знак: входящие и выходящие токи имеют различные знаки. Пример показан на рис.16.Второе правило касается замкнутого контура, выделенного в сложной цепи: сумма произведений токов на сопротивления, по которым они проходят, равняется сумме ЭДС, включенных в данный контур. При этом токам и ЭДС приписывается определенный знак: при за-данном направлении обхода контура положи-тель-ными берутся только те токи (и ЭДС), которые совпадают с выбранным направлением обхода кон-

тура. Так из рис.16 следует:

  1. I1 – I2 + I3 –I4 = 0,

2. I1 R1 + I2 R2 - I4 R4 + I3 R3 = E3 – E2 – E1 .

Лекция 5 Постоянное магнитное поле.

§ 5 –1 Закон Ампера.

Рис.17. Взаимодействие двух

элементов тока.

Опыты показывают, что два элемента тока взаимодейству-ют друг с другом. Принятые представления заставляют нас предположить, что это взаимодействие осуществляется посредством поля. Это поле названо магнитным. Изуче-ние свойств этого поля логично бы было проводить по аналогии с электростатическимполем, однако до настоя-щего времени магнитных «зарядов» не обнаружено. При-нято считать, что магнитное поле всегда создается движу-щимися зарядами, т.е. током. Бесконечно малый отрезок проводника, по которому проходит ток, принято называть

элементом тока. Ампером было установлено, что величина сил взаимодействия двух элементов определяется выражением:

, ,

где смысл принятых обозначений ясен из рис.17 и 18. Величина k как и прежде введена из соображений размерности. В системе СИ она равна 0 4; значение постоянной 0 , которую принято называть магнитной постоянной вакуума, записывается так:

0 = 4  10 –7 .

Для определения силы как вектора закон Ампера должен быть изменен так, чтобы справа стояло векторное произведение:

, .

По аналогии с электростатическим полем для характеристики магнитного поля можно ввести силовую величину, отнесенную к единичному элементу тока. В теории магнитизма эту величину принято называть магнитной индукцией, точнее вектором магнитной индукции. Тогда закон Ампера для произвольного элемента тока I2 dl2 может быть записан как

dF2 = I2 [dl2 dB], dB = dl1sin1 , dB = k [dl1,r12] .

Это определение как модуля, так и самого вектора dB носит название закона Био-Савара-Лапласа.

Рис.18. Правило право-го винта.

Однако для установления единиц измерения величины макро-скопического вектора B, его удобнее определить несколько иным способом. Пусть исследуемое магнитное поле создается системой проводников, а для измерения силы используется в качестве элемента тока короткий жесткий проводник, соеди-ненный с источником тока гибкими проводами. Сила, действу-ющая на пробный элемент, зависит от его ориентации в прост-ранстве. В каждой точке поля существует физически выделенное направление В, которое замечательно тем, что, во-первых, модуль действующей силы пропорционален синусу угла между этим направлением и направлением элемента тока, и, во-вторых, направление силы связано с направлением элемента тока и физи-

чески выделенным направлением В известным правилом право-

го винта:если вращать вектор dl по кратчайшему углу в сторону к физически выделенному направлению, то движение оси винта покажет направление действия силы dF = BIdlsin. В векторной записи

dF = I[dl B].

Сила максимальна, когда dl перпендикулярно направлению В. В этом случае В определя-ется как:

.

Отсюда единица измерения магнитной индукции в системе СИ, называемая тесла, определяется как 1Н/ (1A1M).

Магнитное поле можно наглядно изобразить с помощью силовых линий, проводя их по тем же правилам, чио и в электростатике, но характер этих линий – другой.

Как уже отмечалось,магнитных зарядов не существует, поэтому свойства силовых линий магнитного поля отличаются от свойств электростатического поля. Из следствия теоремы Гаусса вытекает, что поток вектора В через любую замкнутую поверхность должен равняться нулю, т.е. силовые линии магнитной индукции непрерывны, и

.

Теоретический расчет величины В для конкретной конфигурации проводников произво-дится на основании закона Био-Савара-Лапласа с использованием принципа суперпозиции

, где суммирование произодится по всем проводникам, образующих данную систему.

§ 5 –2 Поле прямого тока и витка с током.

В качестве примеров расчета значений вектора магнитной индукции вычислим поле прямого тока и в центре круглого витка с током.

Поле прямого тока.

Рис.19. Поле прямого тока.

Пусть требуется найти поле отбесконечного прямого тока I на расстоянии R от него. Выберем элемент тока dl, как показано на рис.19. Величина модуля вектора определяется выражением

Для суммирования свяжем все переменные друг с другом, выбирая в качестве интегрируемой переменной угол . Из рис.19 видно, что

; .

Подставляя эти выражения в формулу для В, после пре-образований получим:

;

где 1 и 2 – углы, соответствующие направлениям на концы проводника. Если проводник

бесконечный, то 1 0, а 2 , и .

Направление вектора В определяется правилом вычисления векторного произведения: первый сомножитель (dl в нашем случае) вращается в направлении наименьшего угла ко второму сомножителю (r). Направление движения оси правого винта при таком вращении покажет направление их векторного произведения ( на рис.- от нас – значок -). Силовые линии магнитного поля являются концентрическими окружностями, охватывающими про-водник с током. Все они лежат в плоскости, перпендикулярной направлению тока.

Поле витка с током.

Вычислим значение вектора магнитной индукции в центре круглого витка, обтекаемого

Рис.20. Поле в центре

витка с током.

током I. Как видно из рис.20, в этом случае элемент тока dl перпендикулярен радиусу R, и суммирование сводится просто к вычислению длины окружности. Поэтому

.

Все элементы тока дают одинаковое направление вектора dB так ,что суммарный вектор В перпендикулярен плоскости чертежа и направлен на нас (значок  ).

§ 5 –3 Теорема о циркуляции магнитного поля.

Пусть имеется тонкий бесконечный провод, по которому проходит ток силой I. Выберем мысленно окружность радиуса R, концентрическую заданному току и лежащую в плоскос-ти, перпендикулярной ему. Рассмотрим сумму произведений проекций вектора магнитной

Рис.21. Вычисление цир-

куляции.

индукции на соответствующий элемент длины окружности ра-диуса R ( рис.21) Bldl.

Если суммирование проводится по всей длине окружности, то результат носит название циркуляции, т.е. его можно за-писать так .Для выбранного нами контура в виде окруж-ности величина интеграла может быть вычислена непосред-ственно. Во всех точках контура вектора В направлены по касательной к окружности, а значения В постоянны и равны

В = , так что его можно вынести за знак интеграла. Тогда

= 2R и циркуляция .

Рис.22. К расчету элемента контура.

Если мысленный контур не концентричен току, то результат суммирования не меняется, т.к. для любого элемента контура (см. рис.22) Вl dl = и не зависит от расстояния х от тока до элемента контура. Угол d означает малый угол, под которым виден элемент длины контура из точки пересечения его площади током. Очевидно, что полное значение суммирования не изменится и для произвольной формы контура, который удобно в этом случае

представить как ломаную линию, состоящую из элементов окружностей и приращений ра-диуса. Здесь следует помнить, что проекции вектора В на приращения радиуса равны нулю.

Если плоскость, в которой лежит наш мысленный контур, не перпендикулярен на-правлению тока, то контур можно спроектировать на плоскость, нормальную к току, снова результат вычисления циркуляции будет прежний. Если через плоскость нашего контура проходит несколько токов I1, I2 и т.д., то поскольку выражение для циркуляции остается справедливым для каждого тока в отдельности, оно останется справедливым и для суммы токов. Итак, в общем можно записать:

Характеристики

Тип файла
Документ
Размер
4 Mb
Тип материала
Предмет
Высшее учебное заведение

Список файлов лекций

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6314
Авторов
на СтудИзбе
312
Средний доход
с одного платного файла
Обучение Подробнее