part2 (1106111)
Текст из файла
- 50 -
Лекция 5 Силы инерции.
§ 5-1. Неинерциальные системы отсчета.
Первый закон Ньютона утверждает, что состояния покоя и равномерного прямолинейного движения принципиально неразличимы. Другими словами, - это
значит, что законы динамики имеют один и тот же вид в различных инерциальных системах отсчета, т.е. скорость движения системы отсчета не влияет на форму записи законов динамики. Физические утверждения или величины, вид или зна-чения которых не зависят от перехода от одной инерциальной системы отсчета к другой называются инвариантами. В этом смысле можно говорить, что законы Ньютона инвариантны при переходе от одной инерциальной системы отсчета к другой. Однако ньютоновская механика в неявном виде содержит более сильное утверждение. Так при рассмотрении задачи вычисления первой космической скорости и описании движения автомобиля по выпуклому мосту в уравнениях движения предполагалось, что силы, действующие на тела, имеют одну и ту же величину как в неподвижной системе отсчета, так и в системе отсчета, связанных с самим телом. Фактически это предполагает, что силы остаются инвариантными
даже в системах, движущихся с ускорением, т.е. в неинерциальных системах. То же самое можно сказать относительно массы, хотя в действительности масса при скоростях, сравнимых со скоростью света может изменяться:
, ( 5-1 ) где v - скорость тела, с - скорость света, а m 0 - так называемая масса покоя тела.
Выражение ( 5-1 ) может быть выведено из рассмотрения законов динамики в специальной теории относительности, развитой Эйнштейном.9
| z а* y* y x*
x Рис.17. Две системы от- счета. | Если силы и масса являются инвариантами в механи-ке Ньютона, то величина ускорения может быть раз-личной в разных неинерциальных системах. Пусть имеются две системы отсчета XYZ и X* Y* Z* , одна из которых (см. рис 17.) XYZ - покоится, а другая - движется с некоторым ускорением, т.е. является не-инерциальной. В силу установленной инвариантности массы и сил в этих системах имеем: F = F * и m = m* . |
ным ускорением, то общее ускорение тела относительно системы XYZ складывается из этих ускорений:
а = а 0 + а * . ( 5-2 )
Кроме этого возможен еще один вклад в выражение полного ускорения. Для по-
| v 3 > v 2> v 1 v 2 > v 1 u v 1 m Рис.18. «Движущийся тротуар.» | яснения рассмотрим так называемый «движущийся тро-туар» - систему параллельных движущихся с различной скоростью дорожек (см рис.18.) Если тело движется перпендикулярно дорожкам, то при переходе с одной дорожки на другую его скорость будет изменяться. Быстрота изменения скорости определяется двумя факторами: величиной различия скоростей двух соседних дорожек и быстротой перехода тела с одной дорожки на другую, т.е. |
Э
то ускорение называется кориолисовым или поворотным. Направление этого ускорения определяется направлением Dv = vi+1 - vi (i = 1, 2... ) - на рис.18 вправо по отношению к вектору скорости u, т.е. перпендикулярно ему. Из курса метеорологии известно, что этот вид ускорения проявляется во вращающихся системах координат. Величину кориолисова ускорения во вращающейся системе координат
| вращения Dj Du2 u1 u2 A1 · R1 Dj u2 · R2 A2 Рис.19. Определение вели- риолиса. | можно определить из рассмотрения рис.19. На нем |
связано с увеличением тангенциальной скорости вращательного движения при
переходе от меньшего радиуса R1 к большему R2 ,т.е. Du1 = wDR = w( R2- R1 ).
Второе слагаемое Du2, изображенное на рис 19 в правом верхнем углу, обусловлено поворотом вектора u при переходе из положения А1 в положение А2:
Du2= uDj = u wDt. ( 5-4 )
Н
аправление слагаемого Du1 как и на рис.18 направлено перпендикулярно u, т.е. вниз. При стремлении Dt к нулю направление Du2 также стремится к перпендикуляру к u. Поэтому при Dt 0 оба слагаемых совпадают по направлению и
т.к. по смыслу
. Оба сомножителя, входящие в правую часть выражения
( 5-5 ), являются векторами. Ускорение аК - тоже вектор, поэтому в правой части
( 5-5 ) должно стоять векторное произведение. Порядок сомножителей в этом произведении должен быть такой, чтобы само произведение было направлено вправо от направления u, поэтому
Возвращаясь к рассмотрению ускорения тела в неподвижной системе отсчета, теперь можно утверждать, что оно состоит из трех слагаемых:
а = а 0 + а* + аК . ( 5- 7 )
§ 5-2. Второй закон Ньютона в неинерциальных системах отсчета.
Как уже установлено, величина сил и масс являются инвариантами в механике Ньютона, поэтому уравнения движения в неподвижной и неинерциальной системах отсчета записываются следующим образом:
ma = m ( а 0 + а* + аК ) =
, ( 5- 8 )
причем m = m* , a
=
* . Переписывая ( 5- 8 ), получим
m* a* =
- m a 0 - mа K ( 5- 10 )
или m* a* =
* - m a 0 - m aK. ( 5- 10а)
Сравнивая уравнения ( 5- 9 ) и ( 5- 10а), можно заметить, что второй закон Ньютона сохранит свой смысл, если члены (- m a 0 ) и (- m а K ) трактовать как некоторые
дополнительные силы, возникающие в неинерциальной системе отсчета и получившие название сил инерции. (
и
). Первая из сил, стоящих в скобках представляет собой так называемую переносную силу инерции, а вторая - силу инерции Кориолиса. Примером проявления переносной силы инерции может служить поведение пассажиров в переполненном автобусе при его резком торможении, когда какая-то «непонятная сила» заставляет всех их дружно «валится» вперед по ходу движения. Сила инерции Кориолиса объясняет такие явления как отклонение Гольфстрима к северо-востоку, направление пассатов, дующих из области высокого давления в сторону экватора, рельеф берегов рек, текущих в меридианальном направлении, отклонение снарядов, выпущенных из огнестрельного оружия и т.п.10
Лекция 6 Работа и энергия.
§ 6-1. Определение работы силы.
Элементарной работой dA силы F на перемещении dl называется их скалярное произведение ( см. рис.20):
| F a dl Рис.20. Величина эле- | dA = ( F dl ) = F dl cosa . ( 6-1 ) Скалярное произведение ( 6-1 ) может быть представлено в несколько ином виде: или dA = F dl F , ( 6-1** ) |
направление перемещения, а dl F =l cosa - проекцию перемещения на направление силы. В декартовой системе координат величину элементарной работы ( по правилам записи скалярного произведения ) можно записать так:
где Fx , Fy , Fz - проекции силы на оси координат и dx dy dz - cоответствующие проекции перемещения.
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.
направление u1
















