part5 (1106114), страница 2

Файл №1106114 part5 (Куприянов А.К. - Лекции по курсу общей физики для географического факультета) 2 страницаpart5 (1106114) страница 22019-04-28СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Если же заряд находится вне поверхности, то поток пересекает ее четное количество раз (два, четыре и т.д) так, что положительные и отрицательные ( для тупых углов между n и Е) слагаемые уничтожают друг друга и общий поток оказывается равным нулю.

3 . Если зарядов несколько, то в силу принципа суперпозиции Е (Еi) =  Еi ; Ф =  Фi . Для каждого заряда в отдельности теорема доказана, значит она остается справедливой и для макроскопического (конечного) заряда, который можно представить в виде суммы точеч-ных зарядов.

Математическая форма записи теоремы Гаусса имеет следующий вид:

Ф0 = или в развернутом виде .

Следствие: если заряды, создающие поле, находятся вне воображаемой замкнутой поверх-ности, то поток напряженности через эту поверхность равен нулю.

Теорема Гаусса имеет достаточно важное значение, т.к. является одним из уравнений Максвелла, которые лежат в основе теории электромагнетизма. Кроме того, эта теорема может быть использована для вычисления напряженности. Для этого необходимо, чтобы величину Е можно было вынести из-под интеграла. Это можно сделать, если Е =const на всей поверхности интегрирования. Нетрудно догадаться, что воображаемая замкнутая поверхность должна иметь симметрию, подобную симметрии расположения зарядов. При этом удобно ее выбрать так, чтобы косинус угла между вектором Е и нормалью к поверхно-сти принимал значения либо 1 дибо 0. Таким условиям удовлетворяют три класса симмет-рии: сферическая, цилиндрическая и зеркальная, однако в двух последних случаях необхо-димо пренебрегать краевыми эффектами, т.к. на на краях нарушается распределение силовых линий. Ясно, что для выбора конфигурации поверхности необходимо знать, как направлен вектор Е. Здесь важно учитывать, что для статических зарядов напряженность поля вблизи зарядов должна быть перпендикулярной поверхности области распределения зарядов. В противном случае всегда будет составляющая поля, направленная вдоль поверх-ности распределения, что может вызвать электрический ток, и статическое распределение будет нарушено. Для иллюстрации полезно рассмотреть два примера.

Поле от бесконечной плоскости.

Рис.6. Поле от плоскости.

Пусть имеется плоскость, равномерно заряженная с поверхностною плотностью .Требуется найти напря-женность электрического поля в точке, отстоящей от плоскости на расстояние х0. Для решения задачи про-ведем замкнутую поверхность через заданную точку А (см. рис.6).Поверхность имеет форму прямоуголь-ного параллелепипеда, боковые грани которого пер-пендикулярны заряженной плоскости. Выбор такой формы поверхности связан с тем, что вектор напря-женности электрического поля Е вблизи плоскости должен быть нормален к ней. Кроме того, наша вооб-ражаемая поверхность должна быть симметричной относительно заряженной плоскости. Полный поток через поверхность параллелпипеда складывается из

потоков через его боковую поверхность и потоков через его верхнее и нижнее основания, параллельные заряженной плоскости. Но поток через боковые поверхности равен нулю, т.к. нормали ко всем четырем боковым граням перпендикулярны вектору Е и для них cos = =cos(n ^E) = 0. В силу симметрии потоки через верхнее и нижнее основания одинаковы так, что полный поток Ф0 = 2ЕАS. В то же время заряд, находящийся внутри нашей воображаемой поверхности равен заряду на заштрихованном (см.рис.6) участке, т.е. Q =  S. Тогда из теоремы Гаусса следует, что 2ЕАS =(1/0)  S, откуда

ЕА = .

Поле от заряженной сферы.

Рис.7. Поле от сферы.

В качестве второго примера рассмотрим поле от заря-женной сферы, полный заряд которой равен Q. Если точ-ка А (см. рис7) , где требуется определить напряженность, находится вне заряженной сферы, то очевидно в качестве воображаемой поверхности выбрать сферу, концентри-ческую нашей заряженной сфере. В этом случае ЕА па-раллельно n, и Ф0 = ЕАS.Т.к.площадь сферы равна 4R2, то из теоремы Гаусса нетрудно найти:

§ 1 – 5. Работа по перемещению заряда в электрическом поле.

Как уже отмечалось, на электрический заряд q со стороны поля, созданного зарядом Q,

действует кулоновская сила. Поэтому при перемещении заряда q в поле совершается рабо-та,величина которой определяется выражением dA = Fldlcos, где  - угол между направ-

Рис.8. К расчету элементарной

работы.

лениями силы и перемещения (см. рис 8).Учитывая, что Fcos = Fl имеем dA = Fldl. Для нашего случая F = qE; qE = Из рис. видно, что dlcos =dR, и малая работа в поле равна

dA = ; A = = .

Из полученной форулы следует, что работа по пере-мещению заряда в поле не зависит от формы пути, т.е. электростатические силы являются потенциальными. Следовательно, заряд в поле обладает потенциальной энергией. Работа при изменении расстояния от R1 до R2 равна

= .

Из независимости работы от формы пути перемещения следует, что работа электро-статических сил по замкнутому пути равна нулю. В этом случае в первом интеграле величину заряда q, вынесенную за знак интегрирования, можно сократить. Тогда

.

В этой формуле интеграл с кружком обозначает так называемую циркуляцию, т.е. он обоз-начает, что интегрировапние проводится по замкнутому контуру. Справедливость этого утверждения следует из непосредственного выражения для элементарной работы при прод-

вижении вдоль элементарного перемещения dl: dA = Edlcos =El dl, где  - угол между направлением силы и перемещения.

Лекция 2. Электростатика.

§ 2 – 1 Потенциал электрического поля.

Как уже отмечалось, пробный заряд в электрическом поле обладает потенциальной энергией. Однако величина этой энергии зависит от величины заряда q. Для того, чтобы можно было охарактеризовать само поле, условились относить величину потенциальной энергии заряда q к величине этого заряда. Эту величину принято называть потенциалом электрического поля. Здесь необходимо напомнить, что само определение потенциальной энергии содержит в себе неоднозначность, т.к. эта энергия определена с точностью до некоторой постоянной. Для однозначной характеристики электрического поля принято определять эту постоянную при удалении заряда q на бесконечность. Считается, что два за-ряда, удаленные друг от друга на бесконечность, не взаимодействуют, т.е. их энергия взаимодействия и, следовательно, постоянная равны нулю. Поэтому можно сказать, что по-тенциалом электрического поля называется работа по перемещению единичного положительного заряда из данной точки поля в бесконечность. Из выражения для работы А следует, что потенциал  равен

 =

Потенциал – величина скалярная, он удовлетворяет принципу суперпозиции, т.е. потенциал от суммы зарядов равен сумме потенциалов от каждого заряда в отдельности. Если заряд q равный 1 Кулону, перемещается из одной точки поля в другую, то соответствующую работу называют разностью потенциалов или напряжением U, т.е.

 =U = ;

где R1 и R2 соответствуют начальному и конечному положению единичного положитель-ного зваряда. Единицей напряжения, как известно, служит один Вольт. При перемещении произвольного заряда q величина совершаемой работы увеличивается в q раз.

Связь между потенциалом и напряженностью электрического поля.

Связь между потенциалом и напряженностью поля легко установить из выражения для элементарной работы dA. Так dA можно записать через напряженность поля Е и перемещение dl: dA = qEcosdl, где  - угол между Е и dl. С другой стороны, используя определение потенциала, работа dA = qd . Из этих выражений следует, что d = Ecosdl =

= El dl, и

 = .

Обратная связь между напряженностью и приращением потенциала должна иметь вид , однако следует отметить, что напряженность поля – вектор. Поэтому производная должна иметь смысл производной по направлению. Для положительного заряда вектора напряженности положительны и направлены от заряда и в сторону умень-шения потенциала. Поэтому перед производной необходимо поставить знак минус, т.е.

.

Из этого выражения видно, что величина производной зависит от угла между Е и dl. Так для направления, перпендикулярного Е , проекция El равна нулю; наоборот, для направле-ния вдоль Е производная по dl максимальна и равна Е, т.е.

в направлении Е .

Термин «производная по направлению» становится более понятным в применении к прямо-угольным координатам. Рассматривая поочередно проекции Е на оси x,y и z можно напи-сать:

где i, j, и k - единичные вектора вдоль осей x, y и z соответственно. Сам вектор Е нахо-дится как сумма:

Характеристики

Тип файла
Документ
Размер
4 Mb
Тип материала
Предмет
Высшее учебное заведение

Список файлов лекций

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6314
Авторов
на СтудИзбе
312
Средний доход
с одного платного файла
Обучение Подробнее