Эффективные методы численного моделирования динамики нелинейных систем абсолютно твёрдых и деформируемых тел (1105385), страница 16
Текст из файла (страница 16)
Время, проведенное в его лаборатории, а также дружелюбие и готовность его сотрудников помочь, автор всегда будет вспоминать с теплотой.1035. ЛИТЕРАТУРА1.Бахвалов Н. С. Численные методы (анализ, алгебра, обыкновенные дифференциальные уравнения). – Гл. ред. физ.-мат. лит. изд-ва «Наука», М.,1975.2.Блехман И. И. Вибрационная механика.
– Физматлит, 1994.3.Боголюбов Н. Н., Митропольский Ю. А. Асимптотические методы втеории нелинейных колебаний. – Гл. ред. физ.-мат. лит. изд-ва «Наука»,М., 1974.4.Верещагин А.Ф. Компьютерное моделирование динамики сложных механизмов роботов-манипуляторов // Инженерная кибернетика, вып. 6, –C. 65-70.5.Леонтьев В. А.
Оптимальная дискретизация распределённой упругости врасчётных моделях звеньев манипулятора // Тр. 1-й научн.-техн. конф.«Роботы и манипуляторы в экстремальных условиях». – СПб.:СПбДНТП, 1992. – с. 100-106.6.Маркеев А.П. Теоретическая механика: Учеб.
Пособие для университетов. – М.: Наука. Гл. ред. физ.-мат. лит., 1990. – 416 с.7.Погорелов Д.Ю. Введение в моделирование динамики систем тел: Учеб.пособие. – Брянск: БГТУ, 1997.8.Седов Л.И. Механика сплошной среды, тт. I, II. – Гл. ред. физ.-мат. лит.изд-ва «Наука», 1976.9.Справочник по строительной механике корабля. Т. 2 // Под ред. Палий O.M. и др., – Л.: Судостроение, 1982.10. Справочник по математике для инженеров и студентов втузов / Под ред.Бронштейн И.Н., Семендяев K.A. – М.: ГИТТЛ, 1957.11.
Тимошенко С.П., Гере Дж. Механика материалов. – М.: Мир, 1976.12. Agrawal O.P., Shabana A.A. Dynamic analysis of multibody systems usingcomponent modes // Computers and Structures 21(6), 1985, 1301-1312.13. Ambrósio J.A.C., Pereira M.F.O.S. Flexible multibody dynamics with nonlinear deformations: Vehicle dynamics and crashworthiness applications. –Computational methods in mechanical systems: mechanism analysis,synthesys and optimization / J. Angeles, E. Zakhariev (eds.). – (NATO ASIseries.
Series F, Computer and systems sciences; vol. 161). – pp. 382-420.14. Banerjee A.K., Nagarajan S. Efficient simulation of large overall motion ofbeams undergoing large deflection // Multibody Sys. Dyn. 1, 1997, 113-126.15. Bathe K.-J. Finite Element Procedures, Prentice Hall, New Jersey, 1996.16. Belytschko T., Hsieh B.J. Nonlinear transient finite element analysis withconvected coordinates // International Journal for Numerical Methods in En-104Engineering 7, 1973, 255-271.17. Berzeri M., Shabana A.A.
Development of simple models for the elasticforces in the absolute nodal co-ordinate formulation // Journal of Sound andVibration 235(4), 2000, 539-565.18. Campanelli M., Berzeri M., Shabana A. A. Performance of the incrementaland non-incremental finite element formulations in flexible multibody problems // Journal of mechanical design. – 2000.
– Vol. 122. – P. 498.19. Craig R.R. Structural Dynamics.20. Denavit J., Hartenberg R.S. A kinematic motion for lower pair mechanismsbased on matrices // Journal of Applied Mechanics 22, 1955, 215-221.21. Dunavant D.A., High degree efficient symmetrical Gaussian quadrature rulesfor the triangle // Int. J. of Num. Meth. in Eng. 21, (1985), 1129-1148.22. Eichberger A. Simulation von Mehrkörpersystemen auf parallelen Rechnerarchitekturen // Universität-Gesamthochschule Duisburg, Fachbereich Maschinenbau, Dissertation, 1993.23. Eichberger A. Transputer-Based Multibody System Dynamic Simulation, PartI: The Residual Algorithm – A Modified Inverse Dynamic Formulation, PartII: Parallel Implementation – Results // Mechanics of Structures and Machines, 22(2), 1994, 211-261.24.
Featherstone R. Robot dynamics algorithms // Kluwer, Boston. – 1987.25. Gear C.W., Gupta G.K., Leimkuhler B. Automatic integration of EulerLagrange equations with constraints // Journal of Computational and AppliedMathematics 12(13), 1985, 77-90.26. Geradin M., Cardona A., Doan D.B., Duysens J. Finite element modelingconcepts in multibody dynamics // Computer-Aided Analysis of Rigid andFlexible Mechanical Systems / M.S. Pereira and J.A.C. Ambrosio (eds.), Kluwer, Dordrecht, 1994, 233-284.27. Hooker W.W., Margulies G.
The dynamical attitude equations for n-bodysatellite // J. on Astronomical Science 12, 1965, 123-128.28. Huston R.L. Computer methods in flexible multibody dynamics // Int. J. forNumerical Methods in Engineering 32(8), 1991, 1657-1668.29. Huston R.L. Multi-body dynamics including the effect of flexibility and compliance // Computers and Structures 14, 1981, 443-451.30. Huston R.L., Wang Y. Flexibility effects in multibody systems // ComputerAided Analysis of Rigid and Flexible Multibody Systems, M.S. Pereira andJ.A.C.
Ambrosio (eds.), Kluwer, Dordrecht, 1994, 351-376.31. Kreuzer E., Ellermann K. Multibody system dynamics in ocean engineering //Proceedings of NATO ASI on Virtual Nonlinear Multibody Systems 1,W.Schielen, M.Valášek (Eds.), Prague, 2002, 108-129.10532. Kreuzer E., Wilke U. Dynamics of mooring systems in ocean engineering //Archieve of Applied Mechanics, 2001.33. Kruszewski J., Gawronski W., Wittbrodt E., Najbar F., Grabowski S.
MetodaSztywnych Elementow Skonczovnych (Rigid Finite Element Method),Arkady Warszawa, 1975 (польск.).34. Levinson D.A. Equations of motion for multi-rigid-body systems via symbolic manipulations // Journal of Spacecraft and Rockets 14, 1977, 479-487.35. Likins P.W. Modal method for analysis of free rotations of spacecraft // AIAAJournal 5(7), 1967, 1304-1308.36. Mikkola A.M., Shabana A.A. A new plate element based on the absolutenodal coordinate formulation // Proceedings of ASME 2001 DETC, Pittsburgh, 2001.37. Omar M.A., Shabana A.A. A two-dimensional shear deformation beam forlarge rotation and deformation // Journal of Sound and Vibration 243(3),2001, 565-576.38.
Pascal M., Gagarina T. Numerical simulation of flexible multibody systemsusing a virtual rigid body model // Proc. of NATO ASI on Virtual NonlinearMultibody Systems 1, W.Schielen, M.Valášek (Eds.), Prague, 2002, 174-179.39. Pogorelov D. Differential-algebraic equations in multibody system modeling// Numerical Algorithms 19, Baltzer Science Publishers, 1998, 183-194.40. Pogorelov D. Multibody system approach in simulation of underwater cabledynamics // Abstr.
of Euromech 398 Colloq. on Fluid-Structure Interaction inOcean Engineering, TU Hamburg-Harburg, Hamburg, Germany, 1999, p. 40.41. Pogorelov D. Plate modeling by rigid-elastic elements // Zwischenbericht ZB103, Institut B für Mechanik, Universität Stuttgart, 1998.42. Pogorelov D. Some developments in computational techniques in modelingadvanced mechanical systems // Proc. of IUTAM Symposium on Interactionbetween Dynamics and Control in Advanced Mechanical Systems, D.
H. vanCampen (Ed.), Kluwer Academic Publishers, Dordrecht, 1997, 313-320.43. Rankin C.C., Brogan F.A. An element independent corotational procedure forthe treatment of large rotations // ASME Journal of Pressure Vessel Technology 108, 1986, 165-174.44. Rauh J. Ein Beitrag zur Modellierung Elastischer Balkensysteme // Fortschr.Ber. VDI Reihe 18, Nr. 37, VDI-Verlag, Dusseldorf, Germany, 1997.45. Roberson R.E., Wittenburg J. A dynamical formalism for an arbitrary numberof interconnected rigid bodies, with reference to the problem of satellite attitude control // Proc.
3rd Congr. Int. Fed. Autom. Control, Butterworth, Vol. 1,Book 3, Paper 46 D, London, 1967.46. Schiehlen W. (Ed.) Multibody Systems Handbook, Springer, Berlin, 1990.10647. Schiehlen W.O., Rauh J. Modeling of flexible multibeam sysytems by rigidelastic superelements // Revista Brasiliera de Ciencias Mecanicas 8(2), 1986,151-163.48.
Schiehlen W., Kreuzer E. Rechnergestützes Aufstellen der Bewegungsgleichungen gewöhnlicher Mehrkörpersysteme // Ing.-Archiv 46, 1977, 185-194.49. Schwertassek R. Flexible bodies in multibody systems. – Computationalmethods in mechanical systems: mechanism analysis, synthesys and optimization / Jorge Angeles, Evtim Zakhariev.
p. cm. – (NATO ASI series. Series F,Computer and systems sciences; vol. 161). – pp. 329-363.50. Shabana A.A. An absolute nodal coordinate formulation for the large rotationand large deformation analysis of flexible bodies // Techn. Rep. No. MBS961-UIC, Dept. of Mech. Eng., Univ. of Illinois at Chicago, March 1996.51. Shabana A.A. Dynamics of Multibody Systems, 2nd Edition, CambridgeUniversity Press, Cambridge, 1998.52.
Shabana A.A. Flexible multibody dynamics: review of past and recent developments // Multibody System Dynamics 1, 1997, 189-222.53. Shabana A.A., Yakoub R.Y. Three dimensional absolute nodal coordinateformulation for beam elements: Theory // Journal of Mechanical Design 123,2001, 606-621.54. Shabana A.A., Wehage R.A. Coordinate reduction technique for transientanalysis of special substructureswith large angular rotations // Journal ofStructural Mechanics 11(3), 1983, 401-431.55. Simeon B. DAEs and PDEs in elastic multibody systems // Numerical Algorithms 19 (1998), Baltzer Sc.
Publ. – P. 235-246.56. Simo J.C. A finite strain beam formulation. The three-dimensional dynamicproblem, Part I // Computer Methods in Applied Mechanics and Engineering49, 1985, 55-70.57. Simo J.C., Vu-Quoc L. A three-dimensional finite strain rod model, Part II:Computational aspects // Computer Methods in Applied Mechanics andEngineering 58, 1986, 79-116.58. Song J.O., Haug E.J. Dynamic analysis of planar flexible mechanisms //Computer methods in applied mechanics and engineering 24, 1980, 359-381.59. Szilard R., Theory and Analysis of Plates. Classic and Numerical Methods //Prentice-Hall, INC, Englewood Cliffs, New Jersey, 1974.60. Takahashi Y., Shimizu N.