Диссертация (1103862), страница 21
Текст из файла (страница 21)
20. P. 5777–5784.100. Bondarescu M., Thorne K. S. New family of light beams and mirror shapesfor future LIGO interferometers // Physical Review D. 2006. Vol. 74, no. 8.P. 082003(1–6).101. Harry G. M., Abernathy M. R., Becerra-Toledo A. E. et al. Titania-doped tantala/silica coatings for gravitational-wave detection // Classical and QuantumGravity. 2007. Vol. 24, no.
2. P. 405–415.102. Kimble H. J., Lev B. L., Ye J. Optical Interferometers with Reduced Sensitivity to Thermal Noise // Physical Review Letters. 2008. Vol. 101, no. 26.P. 260602(1–4).103. Bondarescu M., Kogan O., Chen Y. Optimal light beams and mirror shapesfor future LIGO interferometers // Physical Review D.
2008. Vol. 78, no. 8.P. 082002(1–9).122104. Villar A. E., Black E. D., DeSalvo R. et al. Measurement of thermal noise inmultilayer coatings with optimized layer thickness // Physical Review D. 2010.Vol. 81, no. 12. P. 122001(1–8).105. Hong T., Miller J., Yamamoto H. et al. Effects of mirror aberrations on Laguerre-Gaussian beams in interferometric gravitational-wave detectors // PhysicalReview D.
2011. Vol. 84, no. 10. P. 102001(1–10).106. Kondratiev N. M., Gurkovsky A. G., Gorodetsky M. L. Thermal noise andcoating optimization in multilayer dielectric mirrors // Physical Review D. 2011.Vol. 84, no. 2. P. 022001(1–9).107. Harry G., Bodiya T. P., DeSalvo R., остальные.
Optical Coatings and ThermalNoise in Precision Measurement. Cambridge University Press, 2012. P. 344.ISBN: 9781107003385.108. Kondrashov I. S., Simakov D. A., Khalili F. Y., Danilishin S. L. Optimizing theregimes of the Advanced LIGO gravitational wave detector for multiple sourcetypes // Physical Review D. 2008. Vol. 78, no. 6.
P. 062004(1–10).109. Khalili F. Y., Miao H., Chen Y. Increasing the sensitivity of future gravitational-wave detectors with double squeezed-input // Physical Review D. 2009.Vol. 80, no. 4. P. 042006(1–7).110. Advanced LIGO Home Page. URL: https://www.advancedligo.mit.edu.111. Harry G. M.
Advanced LIGO: the next generation of gravitational wave detectors // Classical and Quantum Gravity. 2010. Vol. 27, no. 8. P. 084006(1–12).112. LIGO Scientific Collaboration. Instrument Science White Paper. 2013. URL:https://dcc.ligo.org/LIGO-T1300433/public.113. Advanced VIRGO Home Page. URL: http://wwwcascina.virgo.infn.it.114. Harry G.
M., Armandula H., Black E. et al. Thermal noise from optical coatingsin gravitational wave detectors // Appl. Opt. 2006. Vol. 45, no. 7. P. 1569–1574.115. Braginsky V. B., Vyatchanin S. P. Corner reflectors and Quantum-Non-Demolition Measurements in gravitational wave antennae // Physics Letters A. 2004.Vol. 324, no. 5–6. P. 345–360.123116.
Khalili F. Y. Reducing the mirrors coating noise in laser gravitational-waveantennae by means of double mirrors // Physics Letters A. 2005. Vol. 334,no. 1. P. 67–72.117. Goßler S., Bertolini A., Born M. et al. The AEI 10 m prototype interferometer //Classical and Quantum Gravity. 2010. Vol. 27, no. 8. P. 084023(1–9).118. Khalili F. Y. Pass-through Mach-Zehnder topologies for macroscopic quantummeasurements // Physical Review D. 2011. Vol. 83, no. 12. P. 122001(1–11).119. Tarabrin S. P. Diffractional losses in corner reflectors // Proceedings of 7thInternational Conference on Laser and Fiber-Optical Networks Modeling. IEEEConference Publications, 2005.
P. 240–243.120. Fritschel P.DC Readout for Advanced LIGO.2003.LIGO document:G030460-00-R. URL: https://dcc.ligo.org/DocDB/0022/G030460/001/G030460-00.pdf.121. Somiya K., Chen Y., Kawamura S., Mio N. Frequency noise and intensity noiseof next-generation gravitational-wave detectors with RF/DC readout schemes //Physical Review D. 2006. Vol. 73, no.
12. P. 122005(1–17).122. Ward R. L., Adhikari R., Abbott B. et al. DC readout experiment at the Caltech40m prototype interferometer // Classical and Quantum Gravity. 2008. Vol. 25,no. 11. P. 114030(1–8).123. Hild S., Grote H., Degallaix J. et al. DC-readout of a signal-recycled gravitational wave detector // Classical and Quantum Gravity. 2009.
Vol. 26, no. 5.P. 055012(1–10).124. Gravitational Wave Interferometer Noise Calculator (GWINC). URL: https://nodus.ligo.caltech.edu:30889/wiki/doku.php?id=aic_wiki.125. Flanagan É. É., Hughes S. A. Measuring gravitational waves from binary blackhole coalescences. I. Signal to noise for inspiral, merger, and ringdown // Physical Review D. 1998.
Vol. 57, no. 8. P. 4535–4565.126. GNU Scientific Library. URL: http://www.gnu.org/s/gsl.127. Punturo M., Abernathy M., Acernese F. et al. The Einstein Telescope: a third124generation gravitational wave observatory // Classical and Quantum Gravity.2010. Vol. 27, no. 19. P.
194002(1–12).128. Hild S., Abernathy M., Acernese F. et al. Sensitivity studies for third-generation gravitational wave observatories // Classical and Quantum Gravity. 2011.Vol. 28, no. 9. P. 094013(1–13).129. M. Mehmet et al. Squeezed light at 1550 nm with a quantum noise reduction of12.3 dB. 2011. arXiv:1110.3737.130. S. Hild (for the LIGO Scientific Collaboration). The status of GEO 600 // Classical and Quantum Gravity.
2006. Vol. 23, no. 19. P. S643–S651.131. Mueller G., Abbott R., Barsotti L. et al.ing and Control Final Design.2012.Advanced LIGO Length SensURL: https://dcc.ligo.org/LIGO-T1000298-v2/public.132. Hello P., Vinet J.-Y. Analytical models of thermal aberrations in massive mirrorsheated by high power laser beams // J. Phys. France. 1990.
Vol. 51, no. 12.P. 1267–1282.133. Adhikari R. (private communication).134. Khalili F. Y., Danilishin S. L., Müller-Ebhardt H. et al. Negative optical inertiafor enhancing the sensitivity of future gravitational-wave detectors // PhysicalReview D. 2011. Vol. 83, no. 6. P. 062003(1–7).135.
Mizuno J., Strain K. A., Nelson P. G. et al. Resonant sideband extraction: a newconfiguration for interferometric gravitational wave detectors // Physics LettersA. 1993. Vol. 175, no. 5. P. 273–276.136. Purdue P., Chen Y. Practical speed meter designs for quantum nondemolitiongravitational-wave interferometers // Physical Review D. 2002. Vol. 66, no. 12.P. 122004(1–24).137. ATNF Pulsar Catalogue.URL: http://www.atnf.csiro.au/research/pulsar/psrcat.138.
Miao H., Yang H., Adhikari R. X., Chen Y. Quantum limits of interferometertopologies for gravitational radiation detection // Classical and Quantum Gravity.1252014. Vol. 31, no. 16. P. 165010(1–33).139. Evans M., Barsotti L., Kwee P. et al. Realistic filter cavities for advancedgravitational wave detectors // Physical Review D.
2013. Vol. 88, no. 2.P. 022002(1–7).140. Beyersdorf P. T., Fejer M. M., Byer R. L. Polarization Sagnac interferometerwith postmodulation for gravitational-wave detection // Optics Letters. 1999.Vol. 24, no. 16. P. 1112–1114.141. Beyersdorf P. T., Fejer M. M., Byer R. L. Polarization Sagnac interferometerwith a common-path local oscillator for heterodyne detection // J. Opt. Soc. Am.B.
1999. Vol. 16, no. 9. P. 1354–1358.142. Sun K.-X., Fejer M. M., Gustafson E. et al. Sagnac Interferomer for Gravitational-Wave Detection // Physical Review Letters. 1996. Vol. 76, no. 17.P. 3053–3056.143. Traeger S., Beyersdorf P., Goddard L. et al. Polarisation Sagnac interferomerwith a reflective grating beam splitter // Optics Letters. 2000.
Vol. 25, no. 10.P. 722–724.144. Wade A. R., McKenzie K., Chen Y. et al. Polarization speed meter forgravitational-wave detection // Physical Review D.2012.Vol. 86, no. 6.P. 062001(1–8).145. Hild S., Chelkowski S., Freise A. et al. A xylophone configuration for a thirdgeneration gravitational wave detector // Classical and Quantum Gravity. 2010.Vol.
27, no. 1. P. 015003(1–8).146. Khalili F. Y. Quantum speedmeter and laser interferometric gravitational-waveantennae. 2002. arXiv:gr-qc/0211088.147. Einstein Telescope Home Page. URL: http://www.et-gw.eu.148. The ET science team. Einstein gravitational wave Telescope conceptual designstudy. 2011.
URL: https://tds.ego-gw.it/ql/?c=7954.126Приложение АВспомогательные формулыА.1. Пондеромоторное сжатиеВ настоящей диссертации рассматриваются только линейные системы, которые сохраняют гауссовость состояний входящего в них света (см. также Раздел 1.4). Как следствие, для систем без потерь произведение матриц T T† должно содержать исключительно действительные элементы. Более того, для сим[︁ ]︁ ⃒ ⃒метричных систем справедливо: Ti j = e2iβ TRi j ≡ e2iβ sgn Ti j ⃒⃒ Ti j ⃒⃒. Кроме того,T11 = T22 , так как Tmeas = e2iβ R[φ] и Tb.a. = h̄χT x (σ1 T x )T , где χ — полная восприимчивость механической моды, а для функции отклика на смещение справедли[︁ ]︁ ⃒⃒ ⃒⃒xiβво T = e sgn T x ⃒⃒ T x ⃒⃒.jjjИз свойств сингулярного разложения для матрицы TRi j будем иметь:TR = R[upond ] Spond R[vpond ],(А.1)R[upond ] и R[vpond ] — матрицы поворота на соответствующие углы, а Spond — диагональная матрица, состоящая из действительных элементов s1,2 (индекс соответствует номеру строки/столбца).