Диссертация (1103862), страница 20
Текст из файла (страница 20)
P. 042006(1–21).42. Buonanno A., Chen Y. Scaling law in signal recycled laser interferometergravitational-wave detectors // Physical Review D.2003.Vol. 67, no. 6.P. 062002(1–19).43. Buonanno A., Chen Y. Signal recycled laser-interferometer gravitational-wavedetectors as optical springs // Physical Review D.2002.Vol. 65, no. 4.P. 042001(1–26).44. Danilishin S. L. Sensitivity limitations in optical speed meter topology ofgravitational-wave antennas // Physical Review D. 2004. Vol. 69, no. 10.P.
102003(1–17).45. Freise A., Strain K. Interferometer Techniques for Gravitational-Wave Detection // Living Reviews in Relativity. 2010. Vol. 13, no. 1. P. 1–81.46. Braginsky V. B., Khalili F. Y. Low-noise rigidity in quantum measurements //Physical Review A. 1999. Vol. 257, no. 5–6. P. 241–246.47. Khalili F. Y. Frequency-dependent rigidity in large-scale interferometric gravitational-wave detectors // Physics Letters A. 2001. Vol. 288, no.
5–6. P. 251–256.48. Buonanno A., Chen Y. Laser-interferometer gravitational-wave optical-springdetectors // Classical and Quantum Gravity. 2002. Vol. 19, no. 7. P. 1569–1574.49. Rehbein H., Müller-Ebhardt H., Somiya K. et al. Double optical spring enhance117ment for gravitational-wave detectors // Physical Review D. 2008.
Vol. 78, no. 6.P. 062003(1–11).50. Corbitt T., Chen Y., Innerhofer E. et al. An All-Optical Trap for a Gram-ScaleMirror // Physical Review Letters. 2007. Vol. 98, no. 15. P. 150802(1–4).51. The Detection of Gravitational Waves / Ed. by D. G. Blair.
Cambridge, U.K.,New York, U.S.A.: Cambridge University Press, 1991.52. Müller-Ebhardt H. On quantum effects in the dynamics of macroscopic testmasses. 2009.53. Drever R. W. P., Hought J., Munley A. J. et al. Gravitational Wave Detectors Using Laser Interferometers and Optical Cavities: Ideas, Principles andProspects // Quantum Optics, Experimental Gravity, and Measurement Theory,Ed.
by P. Meystre, M. O. Scully. New York: Plenum Press, 1983. P. 503–514.54. Meers B. J. Recycling in laser-interferometric gravitational-wave detectors //Physical Review D. 1988. Vol. 38, no. 8. P. 2317–2326.55. Vinet J.-Y., Meers B., Man C. N., Brillet A. Optimization of long-baseline optical interferometers for gravitational-wave detection // Physical Review D. 1988.Vol. 38, no. 2.
P. 433–447.56. Chen Y.Topics of LIGO Physics: Quantum Noise in Advanced Interfer-ometers and Template Banks for Compact-Binary Inspirals.2003.URL:http://resolver.caltech.edu/CaltechETD:etd-05302003-044325.57. Chen Y. Macroscopic quantum mechanics: theory and experimental concepts ofoptomechanics // Journal of Physics B: Atomic, Molecular and Optical Physics.2013. Vol. 46, no. 10.
P. 104001(1–50).58. Clerk A. A., Devoret M. H., Girvin S. M. et al. Introduction to quantum noise,measurement, and amplification // Reviews of Modern Physics. 2010. Vol. 82,no. 2. P. 1155–1208.59. Teufel J. D., Donner T., Castellanos-Beltran M. A. et al. Nanomechanical motionmeasured with an imprecision below that at the standard quantum limit // NatureNanotechnology.
2009. Vol. 4. P. 820–823.11860. Khalili F. Y., Lazebny V. I., Vyatchanin S. P. Sub-standard-quantum-limit sensitivity via optical rigidity in the advanced LIGO interferometer with opticallosses // Physical Review D. 2006. Vol. 73. P. 062002(1–18).61. Arcizet O., Briant T., Heidmann A., Pinard M. Beating quantum limits in anoptomechanical sensor by cavity detuning // Physical Review A. 2006. Vol. 73.P.
033819(1–8).62. Belfi J., Marin F. Sensitivity below the standard quantum limit in gravitationalwave detectors with Michelson-Fabry-Perot readout // Physical Review D. 2008.Vol. 77, no. 12. P. 122002(1–15).63. Unruh W. G. Quantum Noise in the Interferometer Detector // Quantum Optics,Experimental Gravity, and Measurement Theory, Ed.
by P. Meystre, M. O. Scully. New York: Plenum Press, 1983. P. 647–660.64. Chen Y., Danilishin S. L., Khalili F. Y., Müller-Ebhardt H. QND measurementsfor future gravitational-wave detectors // General Relativity and Gravitation.2011. Vol. 43, no. 2. P.
671–694.65. Vyatchanin S. P., Zubova E. A. Quantum variation measurement of force //Physics Letters A. 1995. Vol. 201, no. 4. P. 269–274.66. Вятчанин С. П., Мацко А. Б. Квантовое вариационное измерение силы икомпенсация нелинейного обратного флуктуационного влияния в инрерферометрическом датчике смещений // Журнал экспериментальной и теоретической физики. 1996. Т.
110. С. 1252–1265.67. Вятчанин С. П., Мацко А. Б. Квантовое вариационное измерение силы икомпенсация нелинейного обратного флуктуационного влияния // Журналэкспериментальной и теоретической физики. 1996. Т. 109. С. 1873–1879.68. Yuen H.
P., Shapiro J. H. Optical communication with two-photon coherentstates–Part III: Quantum measurements realizable with photoemissive detectors // IEEE Transactions on Information Theory. 1980. Vol. 26, no. 1. P. 78–92.69. Caves C. M. Quantum-mechanical noise in an interferometer // Physical ReviewD. 1981. Vol. 23, no. 8. P. 1693–1708.11970. Scully M. O., Zubairy M. S. Quantum Optics.
Cambridge and New York:Cambridge University Press, 1997. P. 630.71. Walls D. F., Milburn G. J. Quantum Optics. 2 edition. Springer, 2008. P. 425.72. Jaekel M. T., Reynaud S. Quantum Limits in Interferometric Measurements //Europhysics Letters. 1990.
Vol. 13, no. 4. P. 301–306.73. Pace A. F., Collett M. J., Walls D. F. Quantum limits in interferometric detection of gravitational radiation // Physical Review A. 1993. Vol. 47, no. 4.P. 3173–3189.74. Клышко Д. Н. Корентный распад фотонов в нелинейной среде // Письма вЖЭТФ. 1967.
Т. 6, № 1. С. 490–492.75. Зельдович Б. Я., Клышко Д. Н. Статистика поля при параметрической люминесценции // Письма в ЖЭТФ. 1969. Т. 9, № 1. С. 69–72.76. Xiao M., Wu L.-A., Kimble H. J. Precision measurement beyond the shot-noiselimit // Physical Review Letters. 1987. Vol. 59, no. 3. P.
278–281.77. Grangier P., Slusher R. E., Yurke B., LaPorta A. Squeezed-light–enhanced polarization interferometer // Physical Review Letters. 1987. Vol. 59, no. 19.P. 2153–2156.78. Braunstein S. L., van Loock P. Quantum information with continuous variables //Reviews of Modern Physics. 2005. Vol. 77, no. 2. P.
513–577.79. Takeno Y., Yukawa M., Yonezawa H., Furusawa A. Observation of -9 dBquadrature squeezing with improvement of phasestability in homodyne measurement // Optics Express. 2007. Vol. 15, no. 7. P. 4321–4327.80. Vahlbruch H., Chelkowski S., Hage B. et al. Demonstration of a SqueezedLight-Enhanced Power- and Signal-Recycled Michelson Interferometer // Physical Review Letters. 2005. Vol.
95, no. 21. P. 211102(1–4).81. Vahlbruch H., Mehmet M., Chelkowski S. et al. Observation of Squeezed Lightwith 10-dB Quantum-Noise Reduction // Physical Review Letters. 2008. Vol.100, no. 3. P. 033602(1–4).82. Khalaidovski A., Vahlbruch H., Lastzka N. et al. Long-term stable squeezed120vacuum state of light for gravitational wave detectors // Classical and QuantumGravity. 2012. Vol. 29, no. 7. P. 075001(1–10).83. Aasi J., Abadie J., Abbott B. P.
et al. Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light // Nature Photonics. 2013.Vol. 7, no. 8. P. 613–619.84. Abadie J., Abbott B. P., Abbott R. et al. A gravitational wave observatory operating beyond the quantum shot-noise limit // Nature Physics. 2011. Vol. 7,no. 12. P. 962–965.85. Grote H., Danzmann K., Dooley K. L. et al. First Long-Term Application ofSqueezed States of Light in a Gravitational-Wave Observatory // Physical Review Letters.
2013. Vol. 110, no. 18. P. 181101(1–5).86. Corbitt T., Chen Y., Khalili F. et al. A squeezed state source using radiationpressure-induced rigidity // Physical Review A. 2006. Vol. 73. P. 023801(1–14).87. Harms J., Chen Y., Chelkowski S. et al. Squeezed-input, optical-spring, signal-recycled gravitational-wave detectors // Physical Review D. 2003. Vol. 68,no. 4. P. 042001(1–8).88. Buonanno A., Chen Y. Improving the sensitivity to gravitational-wave sourcesby modifying the input-output optics of advanced interferometers // PhysicalReview D. 2004. Vol. 69, no. 10. P. 102004(1–29).89. Corbitt T., Mavalvala N., Whitcomb S.
Optical cavities as amplitude filters forsqueezed fields // Physical Review D. 2004. Vol. 70, no. 2. P. 022002(1–8).90. Khalili F. Y. Optimal configurations of filter cavity in future gravitational-wavedetectors // Physical Review D. 2010. Vol. 81, no. 12. P. 122002(1–11).91. Брагинский В. Б., Воронцов Ю. И.
Квантово-механические ограничения вмакроскопических экспериментах и современная экспериментальная техника // Успехи физических наук. 1974. Т. 114. С. 41–53.92. Брагинский В. Б., Воронцов Ю. И., Халили Ф. Я. Квантовые особенностипондеромоторного измерителя электромагнитной энергии // Журнал экспериментальной и теоретической физики. 1977. Т.
73. С. 1340–1343.12193. Thorne K. S., Drever R. W. P., Caves C. M. et al. Quantum Nondemolition Measurements of Harmonic Oscillators // Physical Review Letters. 1978. Vol. 40,no. 11. P. 667–671.94. Воронцов Ю. И. Теория и методы макроскопических измерений.
Наука,1989. С. 278. ISBN: 5-02-013852-5.95. Khalili F. Y., Levin Y. Speed meter as a quantum nondemolition measuringdevice for force // Physical Review D. 1996. Vol. 54, no. 8. P. 4735–4737.96. Braginsky V. B., Gorodetsky M. L., Khalili F. Y., Thorne K. S. Dual-resonatorspeed meter for a free test mass // Physical Review D. 2000. Vol. 61, no. 4.P. 044002(1–13).97. Purdue P. Analysis of a quantum nondemolition speed-meter interferometer //Physical Review D. 2002. Vol. 66, no.
2. P. 022001(1–12).98. Данилишин Ш. Л. Квантовый измеритель скорости в лазерных гравитационных антеннах // Оптика и Спектроскопия. 2004. Т. 96, № 5. С. 797–803.99. Mours B., Tournefier E., Vinet J.-Y. Thermal noise reduction in interferometric gravitational wave antennas: using high order TEM modes // Classical andQuantum Gravity. 2006. Vol. 23, no.











