Диссертация (1102653), страница 10
Текст из файла (страница 10)
3.183.22: íà ðèñ. 3.17,3.18 èçîáðàæåíà äèíàìèêà òðóáêè E (q(t), Q(t)), íà ðèñ. 3.19 èçîáðàæåíû ñîá-ñòâåííûå ÷èñëà òðóáêè âäîëü òðàåêòîðèè, è íà ðèñ. 3.203.22 èçîáðàæ¼í íàáîðäâèæåíèé êîíòåéíåðîâ â ðàçëè÷íûå ìîìåíòû âðåìåíè. Íà ýòèõ ðèñóíêàõ ñåðûìèçîáðàæåíû ïðåïÿòñòâèÿ, ïóíêòèðîì èçîáðàæåíî öåëåâîå ìíîæåñòâî, ñïëîøíîé÷åðíîé ëèíèåé èçîáðàæåíû ãðàíèöû êîíòåéíåðà, òîíêîé ëèíèåé îáîçíà÷åíûòðàåêòîðèè öåíòðîâ.90èñ. 3.18: Òðóáêè E (q1 (t), Q1(t)), E (q2 (t), Q2 (t)), èçîáðàæåííûå ñî ñïëîøíîéïîâåðõíîñòüþ.254.51.841.63EigenvaluesEigenvalues3.52.521.51.41.2110.80.50051015Time202530051015Time202530èñ.
3.19: Ñîáñòâåííûå ÷èñëà ìàòðèöû êîíèãóðàöèé êîíòåéíåðà Q1 (t) (ñëåâà)è Q2 (t) (ñïðàâà) âäîëü òðàåêòîðèè äâèæåíèÿ. Ïóíêòðèðíûìè ëèíèÿìè îòìå÷åíû âíóòðåííåå è âíåøíåå îãðàíè÷åíèå.9164422x22x600−2−2−4−4−6−6−8−6−4−202x4681012−8−6−4−2012x468101210121664422x2x2èñ. 3.20: Êîíòåéíåð â ìîìåíòû âðåìåíè t = 0, t = 6.12.00−2−2−4−4−6−6−8−6−4−202x4681012−8−6−4−2012x4681664422x2x2èñ. 3.21: Êîíòåéíåð â ìîìåíòû âðåìåíè t = 12.37, t = 18.62.00−2−2−4−4−6−6−8−6−4−202x4681012−81−6−4−202x4681èñ. 3.22: Êîíòåéíåð â ìîìåíòû âðåìåíè t = 24.87, t = 30.921012Çàêëþ÷åíèå çàêëþ÷åíèå êðàòêî ñîðìóëèðóåì îñíîâíûå ðåçóëüòàòû ðàáîòû.1. åøåíà çàäà÷à ñèíòåçà äëÿ ìàòðè÷íîé ëèíåéíî-êâàäðàòè÷íîé çàäà÷è ÷åðåç ñâåäåíèå å¼ ê âåêòîðíîé.
Ïîëó÷åíî ÿâíîå âûðàæåíèå äëÿ óíêöèèöåíû. Óêàçàí êëàññ ñèñòåì, â êîòîðîì ìåòîä ïîçâîëÿåò âåðíóòüñÿ ê èñõîäíûì ìàòðè÷íûì îáîçíà÷åíèÿì.2. Ïîñòðîåíà ñïåöèàëüíàÿ îðìà çàïèñè äåéñòâèÿ ìàòðè÷íûõ îïåðàòîðîââ òåðìèíàõ ïðåäñòàâëåíèé îïåðàòîðîâ, ïîçâîëÿþùàÿ ñîõðàíèòü ìàòðè÷íóþ îðìó ðåøåíèÿ. Âûâåäåí ðÿä ñâîéñòâ ïðåäñòàâëåíèé. Ïîêàçàíî, ÷òîèñïîëüçîâàíèå ïîäîáíîãî ïîäõîäà àëãîðèòìè÷åñêè áîëåå ýåêòèâíî, ÷åìðåøåíèå ÷åðåç âåêòîðèçàöèþ.3. Áûëà ðåøåíà ìàòðè÷íàÿ çàäà÷à ñèíòåçà ñ ãåîìåòðè÷åñêèì (¾æ¼ñòêèì¿)îãðàíè÷åíèåì íà óïðàâëåíèå. Ïðåäëîæåí ñïîñîá íàãëÿäíîé âèçóàëèçàöèèìíîæåñòâ â ïðîñòðàíñòâå ìàòðèö, åãî äåéñòâèå ïðîèëëþñòðèðîâàíî íà ðÿäå ïðèìåðîâ.
Ïðèâåäåíû îðìóëû äëÿ âíóòðåííèõ è âíåøíèõ îöåíîê ìíîæåñòâ äîñòèæèìîñòè è ðàçðåøèìîñòè â ïðîñòðàíñòâàõ ìàòðèö, íà îñíîâåêîòîðûõ ñòðîèòñÿ ïðèáëèæ¼ííîå ðåøåíèå çàäà÷è ñèíòåçà. Ïîëó÷åíûå ìåòîäû ïðèìåíåíû äëÿ ðåøåíèÿ çàäà÷è ðåêîíèãóðàöèè.åøåíèå çàäà÷ óïðàâëåíèÿ äëÿ ñèñòåì ñ ìàòðè÷íûìè àçîâûìè ïåðåìåííûìè ïðåäñòàâëÿåò áîëüøîé èíòåðåñ äëÿ ñîâðåìåííîé ìàòåìàòè÷åñêîé òåîðèè93óïðàâëåíèÿ.
Èçëîæåííûå â íàñòîÿùåé ðàáîòå ìåòîäû è ïîäõîäû ïðèìåíåíû êøèðîêîìó êðóãó ïîäîáíûõ çàäà÷. Îïåðàòîðíûé ìåòîä ðåøåíèÿ, èçëîæåííûéâî âòîðîé ãëàâå, ìîæåò áûòü èñïîëüçîâàí äëÿ çàäà÷ ñ âûñîêîé ðàçìåðíîñòüþàçîâîé ïåðåìåííîé. Ìåòîäû, èçëîæåííûå â òðåòüåé ãëàâå, ìîãóò ïðèìåíÿòüñÿäëÿ ìàòðè÷íûõ çàäà÷ äîñòèæèìîñòè è ñèíòåçà óïðàâëåíèé ïðè íàëè÷èè ãåîìåòðè÷åñêèõ îãðàíè÷åíèé íà óïðàâëåíèå. Çàäà÷è ðåêîíèãóðàöèè è ðàçáèåíèÿêîíòåéíåðà â òðåòüåé ãëàâå ïðîèñõîäÿò èç ãðóïïîâîãî óïðàâëåíèÿ è ÿâëÿþòñÿ ñîñòàâíûì ýòàïîì ðåøåíèÿ îáùåé çàäà÷è ñèíòåçà óïðàâëåíèé äëÿ ãðóïïûàãåíòîâ â óñëîâèÿõ ïðåïÿòñòâèé.åçóëüòàòû íàñòîÿùåé ðàáîòû äîïóñêàþò îáîáùåíèå è äàëüíåéøååå ðàçâèòèå â ðàìêàõ ýòèõ çàäà÷.94Ëèòåðàòóðà[1℄ A. B. Kurzhanski and I.
Valyi. Ellipsoidal Calulus for Estimation and Control,Birkhauser, Boston, 1997.[2℄ Kurzhanski A.B., Varaiya P. On synthesizing target ontrols under obstaleand ollision avoidane // Journal of Franklin Institute. 2010. February. V.347, 1. Pp. 130145.[3℄ Êóðæàíñêèé À. Á.
Çàäà÷à óïðàâëåíèÿ ãðóïïîâûì äâèæåíèåì. Îáùèå ñîîòíîøåíèÿ // Äîêëàäû îññèéñêîé Àêàäåìèè íàóê. Ò. 426, 1. C. 2025(2009).[4℄ Êóðæàíñêèé À. Á. Î çàäà÷å ãðóïïîâîãî óïðàâëåíèÿ â óñëîâèÿõ ïðåïÿòñòâèé// Òðóäû èíñòèòóòà ìàòåìàòèêè è ìåõàíèêè ÀÍ, Ò. 20, 3, Ñ. 166179(2014).[5℄ Kurzhanski A.B., Varaiya P. Dynami Optimization for Reahability Problems// Journal of Optimization Theory and Appliations, V.
2, P. 227251 (2001).[6℄ Kurzhanski A.B., Set-valued alulus and dynami programming in problemsof feedbak ontrol // Int. Ser. Numer. Math., 124, 163174 (1998).[7℄ Êóðæàíñêèé À. Á. Óïðàâëåíèå è íàáëþäåíèå â óñëîâèÿõ íåîïðåäåëåííîñòè.Ì.: Íàóêà, 1977.95[8℄ A. B. Kurzhanski and P. Varaiya, Dynamis and Control of Trajetory Tubes:Theory and Computation, Birkhauser, Boston, 2014[9℄ Ïîíòðÿãèí Ë. Ñ., Áîëòÿíñêèé Â. ., àìêðåëèäçå . Â., Ìèùåíêî Å.
Ô. Ìàòåìàòè÷åñêàÿ òåîðèÿ îïòèìàëüíûõ ïðîöåññîâ. Ì.: Íàóêà, 1961.[10℄ Êðàñîâñêèé Í. Í. Òåîðèÿ óïðàâëåíèÿ äâèæåíèåì. Ì.: Íàóêà, 1968.[11℄ Êðàñîâñêèé Í. Í. Èãðîâûå çàäà÷è î âñòðå÷å äâèæåíèé. Ì.: Íàóêà, 1970.[12℄ Êðàñîâñêèé Í. Í. Óïðàâëåíèå äèíàìè÷åñêîé ñèñòåìîé.
Ì.: Íàóêà, 1985.[13℄ Êðàñîâñêèé Í. Í., Ñóááîòèí À. È. Ïîçèöèîííûå äèåðåíöèàëüíûå èãðû.Ì.: Ìèð, 1974.[14℄ Kurzhanskiy A. A. and Varaiya, P. Ellipsoidal Toolbox.http://systemanalysisdpt-m-msu.github.io/ellipsoids/[15℄ Áåëëìàí . Äèíàìè÷åñêîå ïðîãðàììèðîâàíèå. Ì.: ÈË, 1960.[16℄ Bellman R., Dreyfus S. Applied dynamic programming.
Princeton, PrincetonUniversity Press, 1962.[17℄ Òûðòûøíèêîâ Å. Å. Ìàòðè÷íûé àíàëèç è ëèíåéíàÿ àëãåáðà. Ì., Ôèçìàòëèò, 2007.[18℄ Zhang F. (Ed.), The Shur Complement and Its Appliations, Springer, NewYork, 2005.[19℄ Ìàãíóñ ß. ., Íåéäåêêåð Õ., Ìàòðè÷íîå äèåðåíöèàëüíîå èñ÷èñëåíèå ñïðèëîæåíèÿìè ê ñòàòèñòèêå è ýêîíîìèêå, Ì.: Ôèçìàòëèò, 2002.[20℄ Ëè Ý. Á., Ìàðêóñ Ë. Îñíîâû òåîðèè îïòèìàëüíîãî óïðàâëåíèÿ. Ì.: Íàóêà,1972.96[21℄ ×åáóíèí È.Â. Óñëîâèÿ óïðàâëÿåìîñòè äëÿ óðàâíåíèÿ èêêàòè // Äèåðåíöèàëüíûå óðàâíåíèÿ. 2003. Ò. 39, 12.
Ñ. 16541661.[22℄ Åãîðîâ À. È. Óðàâíåíèÿ èêêàòè. Ì.: Ôèçìàòëèò, 2001.[23℄ Çåëèêèí Ì. È. Îäíîðîäíûå ïðîñòðàíñòâà è óðàâíåíèÿ èêêàòè â âàðèàöèîííîì èñ÷èñëåíèè. Ì.: Ôàêòîðèàë, 1998.[24℄ ×åðíîóñüêî Ô. Ë. Îöåíèâàíèå àçîâîãî ñîñòîÿíèÿ äèíàìè÷åñêèõ ñèñòåì.Ì., Íàóêà, 1988.[25℄ Âàæåíöåâ À. Þ. Âíóòðåííèå ýëëèïñîèäàëüíûå îöåíêè â çàäà÷àõ äèíàìèêèè óïðàâëåíèÿ. Êàíäèäàòñêàÿ äèññåðòàöèÿ ïî ñïåöèàëüíîñòè 01.01.07, íàó÷íûé ðóêîâîäèòåëü Êóðæàíñêèé À. Á.
Ì., ÌÓ èì. Ì.Â. Ëîìîíîñîâà (2004).[26℄ Êîëìîãîðîâ À. Í., Ôîìèí Ñ. Â. Ýëåìåíòû òåîðèè óíêèé è óíêöèîíàëüíîãî àíàëèçà. Ì.:Ôèçìàòëèò, 2006.[27℄ óäèí Ó. Ôóíêöèîíàëüíûé àíàëèç. Ì.: Ìèð, 1975.[28℄ Rene Boel and Jan H. van Shuppen, Control of the observation matrix forontrol purposes, in: Proeedings of the 19th International Symposium onMathematial Theory of Networks and Systems, Budapest, Hungary, 2010, pp.12611268.[29℄ Áåëëìàí . Ââåäåíèå â òåîðèþ ìàòðèö. Ì.: Íàóêà, 1969.[30℄ àíòìàõåð Ô. . Òåîðèÿ ìàòðèö.
Ì., Ôèçìàòëèò, 2010.[31℄ Horn R., Jhonson C. Topis in matrix analysis. Cambridge: CambridgeUniversity Press, 1991.[32℄ Steeb W.-H. Problems and solutions in introdutory and advaned matrixalulus. London: World Sienti, 2006.97[33℄ S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge UniversityPress, Cambridge, 2004.[34℄ S. Boyd, L. El Ghaoui, E. Feron, and V.
Balakrishna, Linear Matrix Inequalitiesin System and Control Theory, SIAM, Philadelphia, 1994.[35℄ Ïîëîâèíêèí Å. Ñ. è Áàëàøîâ Ì.Â., Ýëåìåíòû âûïóêëîãî è ñèëüíî âûïó-óêëîãî àíàëèçà, Ì.: Ôèçìàòëèò, 2004.[36℄ îêàåëëàð ., Âûïóêëûé àíàëèç, Ì.: Ìèð, 1973.[37℄ Âàñèëüåâ Ô. Ï., Ìåòîäû îïòèìèçàöèè, Ì.: ÌÖÍÌÎ, 2011.[38℄ Ôèëèïïîâ À. Ô. Äèåðåíöèàëüíûå óðàâíåíèÿ ñ ðàçðûâíîé ïðàâîé ÷à-ñòüþ, Ì.: Íàóêà, 1985.[39℄ Ìèùåíêî À. Ñ., Ôîìåíêî À.
Ò. Êóðñ äèåðåíöèàëüíîé ãåîìåòðèè è òî-ïîëîãèè. Ì.: Ôàêòîðèàë, 2000.[40℄ àøåâñêèé Ï. Ê. èìàíîâà ãåîìåòðèÿ è òåíçîðíûé àíàëèç. Ì.: Íàóêà,1967.[41℄ J. L. Synge and A. Shild, Tensor Calulus, Dover Publiations, New York,1978.[42℄ Íîâèêîâ Ñ. Ï., Òàéìàíîâ È. À., Ñîâðåìåííûå ãåîìåòðè÷åñêèå ñòðóêòóðûè ïîëÿ, Ì.:ÌÖÍÌÎ, 2006.[43℄ M. Marus, All linear operators leaving the unitary group invariant // DukeMath.
J., vol. 26, pp. 155-163 (1959).[44℄ A. Kovas, Trae preserving linear transformations on matrix algebras // Linearand Multilinear Algebra, vol. 4, pp. 243250 (1976/77).98[45℄ Chi-Kwong Li, Nam-Kiu Tsing, Linear preserver problems // Linear Algebraand its Appliations, vol. 162164, pp. 217235 (1992).[46℄ L. Baribeau and T. Ransford, Non-linear spetrum-preserving maps // Bull.London Math.
So., vol. 32, pp. 814 (2000).[47℄ Êóðæàíñêèé À. Á. Íèêîíîâ Î. È. Ýâîëþöèîííûå óðàâíåíèÿ äëÿ ïó÷êîâòðàåêòîðèé ñèíòåçèðîâàííûõ ñèñòåì óïðàâëåíèÿ // Äîêëàäû ÀÍ, Ò. 133,4, 578581 (1993).[48℄ Kurzhanski A.B. and Filippova, T.F., On the theory of trajectory tubes:a mathematical formalism for uncertain dynamics, viability and control //Advances in Nonlinear Dynamics and Control. Progress in Systems andControl Theory, vol. 17, pp. 122–188 (1993).[49℄ Êóðæàíñêèé À. Á., Äàðüèí À.
Í. Ïàðàëëåëüíûé àëãîðèòì âû÷èñëåíèÿ èíâàðèàíòíûõ ìíîæåñòâ ëèíåéíûõ ñèñòåì áîëüøîé ðàçìåðíîñòè ïðè íåîïðåäåë¼ííûõ âîçìóùåíèÿõ // Æóðíàë âû÷èñëèòåëüíîé ìàòåìàòèêè è ìàòåìàòè÷åñêîé èçèêè. 2013. Òîì 53, . 1. C. 4757.[50℄ Âîñòðèêîâ È. Â., Äàðüèí À. Í., Êóðæàíñêèé À.Á. Óñïîêîåíèå ìíîãîçâåííîéêîëåáàòåëüíîé ñèñòåìû â óñëîâèÿõ íåîïðåäåë¼ííûõ âîçìóùåíèé // Äèåðåíöèàëüíûå óðàâíåíèÿ, Ò. 42, 11, ñ. 14521463 (2006).[51℄ Kurzhanski A.B., Varaiya P. Optimization of Output Feedback Control Un-der Set-Membership Uncertainty // Journal of Optimization Theory and Applications. 2011. V.
151. Pp. 11–32.[52℄ Kurzhanski A.B., Mitchell I.M., Varaiya P. Control Synthesis for State Con-strained Systems and Obstacle Problems // Proc. NOLCOS-04. / IFAC.Stuttgart: Elsevier Science, 2004.99[53℄ A. B Kurzhanski and P. Varaiya, Ellipsoidal Tehniques for ReahabilityAnalysis. Part I: External Approximations. Part II: Internal Approximations.Box-valued Constraints, Optimization methods and software, vol. 17, no. 2,pp. 177237, 2002.[54℄ Êóðæàíñêèé À. Á., Ìåñÿö À. È.