Диссертация (1102653), страница 11
Текст из файла (страница 11)
Îïòèìàëüíîå óïðàâëåíèå ýëëèïñîèäàëüíûìè äâèæåíèÿìè // Äèåðåíöèàëüíûå óðàâíåíèÿ. 2012. Ò. 48. 12.Ñ. 15251532.[55℄ Êóðæàíñêèé À. Á., Ìåñÿö À. È. Óïðàâëåíèå ýëëèïñîèäàëüíûìè òðàåêòîðèÿìè. Òåîðèÿ è âû÷èñëåíèÿ // Æóðíàë âû÷èñëèòåëüíîé ìàòåìàòèêè èìàòåìàòè÷åñêîé èçèêè. 2014. Ò. 54. 3. C. 404414.[56℄ Ìåñÿö À.È. Óïðàâëåíèå ýëëèïñîèäàëüíûìè òðàåêòîðèÿìè // ÌàòåðèàëûXX ìåæäóíàðîäíîé êîíåðåíöèè ¾Àâòîìàòèêà¿, Íèêîëàåâ, Óêðàèíà, ñòð.6364, 2013.[57℄ Kurzhanski A.B., Mesyats A.I. Ellipsoidal motions for applied ontrol: fromtheory to omputation // Proeedings of the 52nd IEEE Conferene on Deisionand Control, Florene, Italy, pp.
58165821, 2013.[58℄ Kurzhanski A.B., Mesyats A.I. The Mathematics of Team Control // Pro-ceedings of the 21st International Symposium on Mathematical Theory ofNetworks and Systems, Groningen, Netherlands, p. 1755-1758, 2014.[59℄ A. I. Subbotin, Generalized Solutions of First-Order PDE’s. The DynamicOptimization Perspective, SCFA, Boston, 1995.[60℄ W. H. Fleming and H. M.
Soner, Controlled Markov Proesses and VisositySolutions, Springer-Verlag, New York, 1993.100[61℄ Clarke F.H., Ledyaev Y.S., Stern R.J., and Wolenski P.R., Nonsmooth Analysisand Control Theory, Springer, New York (1998).[62℄ Lions P.-L. General solutions of HamiltonJaobi Equations, Pitman, London(1982).[63℄ N. N. Krasovskii and A. I.
Subbotin, Game-Theoretial Control Problems,Springer, New York, 1988.[64℄ R. Olfati-Saber, Floking for multi-agent dynami systems: algorithms andtheory, IEEE Trans. Automati Control, vol.51, No. 3, 2006, pp. 401420.[65℄ Group Coordination and Cooperative Control / Eds.K.Y. Pettersen,J.T. Gravdahl, H. Nijmeijer. Berlin: Springer–Verlag, 2006.[66℄ Cooperative Control / Eds. V. Kumar, N.
Leonard, A.S. Morse.Berlin:SpringerVerlag, 2004.[67℄ O.Junge, S.Ober-Bloebaum, “Optimal reconfiguration of formation flyingsatellites,” IEEE Conference on Decision and Control and European Control Conference ECC, Seville, Spain, 2005, pp.66–71.[68℄ .È. Êîçëîâ, Í. Í. Ìàêñèìêèí, Ë. Â.
Êèñåëåâ. Óñòîé÷èâîñòü êîíèãóðàöèéãðóïïîâîãî äâèæåíèÿ àâòîíîìíûõ ïîâîäíûõ ðîáîòîâ â óñëîâèÿõ íåîïðåäåëåííîñòè // Ïîäâîäíûå ðîáîòû è ðîáîòîòåõíèêà. Ò. 5, 19, Ñ. 4046 (2010).[69℄ K. Fan, Minimax theorems, Pro. Nat. Aad. Si., vol. 39, no 1, pp. 4247(1953).[70℄ Äåìüÿíîâ Â. Ô. Ìèíèìàêñ: ïðîèçâîäíûå ïî íàïðàâëåíèÿì. Ë.: Èçä-âî ËÓ,1974.101[71℄ V. V. Vasin and I. I. Eremin, Operators and Iterative Proesses of Fejer Type,Gruyter, Berlin, 2009.[72℄ S.-P. Han and O.
L. Mangasarian, “Exact penalty functions in nonlinear pro-gramming,” // Mathematical Programming. 1979. No 17. P. 251–269.[73℄ Strassen V. Gaussian Elimination is not Optimal // Numerishe Mathematik.1969. 13, P. 354356.[74℄ Coppersmith D., Winograd S. Matrix multipliation via arithmeti progressions// Journal of Symboli Computation. 1990. 9. P. 251280.102.