Конформационная динамика нуклеиновых кислот при взаимодействии с лигандами (1098269), страница 43
Текст из файла (страница 43)
// Nucleic Acids Res. — 2008. — Jan. —Vol. 36, Database issue. — Pp. D360–7.165. Wang J. [et al.] Development and testing of a general amber force field. // JComput Chem. — 2004. — July. — Vol. 25, no. 9. — Pp. 1157–74.166. Wang J. [et al.] Automatic atom type and bond type perception in molecularmechanical calculations. // J Mol Graph Model.
— 2006. — Oct. — Vol. 25,no. 2. — Pp. 247–60.167. Noy A. [et al.] Theoretical study of large conformational transitions in DNA:the B<–>A conformational change in water and ethanol/water. // NucleicAcids Res. — 2007. — Nov. — Vol. 35, no. 10. — Pp. 3330–8.168. Beck D., White G., Daggett V. Exploring the energy landscape of proteinfolding using replica-exchange and conventional molecular dynamics simulations.
// J Struct Biol. — 2007. — Mar. — Vol. 157, no. 3. — Pp. 514–23.169. Meyer M., Hocquet A., Sühnel J. Interaction of sodium and potassium ionswith sandwiched cytosine-, guanine-, thymine-, and uracil-base tetrads. // JComput Chem. — 2005. — Mar. — Vol. 26, no. 4. — Pp.
352–64.170. Mourik T. van, Dingley A. Characterization of the monovalent ion positionand hydrogen-bond network in guanine quartets by DFT calculations of NMRparameters. // Chemistry. — 2005. — Oct. — Vol. 11, no. 20. — Pp. 6064–79.284171. Fonseca Guerra C.
[et al.] Telomere structure and stability: covalency in hydrogen bonds, not resonance assistance, causes cooperativity in guanine quartets. // Chemistry. — 2011. — Nov. — Vol. 17, no. 45. — Pp. 12612–22.172. Bogdanov A. [Some structural aspects of the peptidyltransferase reaction]. //Mol Biol (Mosk). — 2003.
— July. — Vol. 37, no. 3. — Pp. 511–4.173. Tu G. [et al.] C-terminal extension of truncated recombinant proteins in Escherichia coli with a 10Sa RNA decapeptide. // J Biol Chem. — 1995. —Apr. — Vol. 270, no. 16. — Pp. 9322–6.174. Keiler K., Waller P., Sauer R. Role of a peptide tagging system in degradationof proteins synthesized from damaged messenger RNA. // Science. — 1996.
—Feb. — Vol. 271, no. 5251. — Pp. 990–3.175. Sundermeier T. [et al.] A previously uncharacterized role for small protein B(SmpB) in transfer messenger RNA-mediated trans-translation. // Proc NatlAcad Sci U S A. — 2005. — Feb. — Vol. 102, no. 7. — Pp. 2316–21.176. Nonin-Lecomte S., Felden B., Dardel F. NMR structure of the Aquifex aeolicus tmRNA pseudoknot PK1: new insights into the recoding event of theribosomal trans-translation // Nucleic Acids Res.
— 2006. — Vol. 34, no. 6. —Pp. 1847–1853.177. Gutmann S. [et al.] Crystal structure of the transfer-RNA domain of transfermessenger RNA in complex with SmpB // Nature. — 2003. — Aug. — Vol.424, no. 6949. — Pp. 699–703.178. Valle M. [et al.] Visualizing tmRNA entry into a stalled ribosome // Science. —2003. — Apr. — Vol. 300, no. 5616. — Pp. 127–130.285179. Kaur S.
[et al.] Cryo-EM visualization of transfer messenger RNA with twoSmpBs in a stalled ribosome. // Proc Natl Acad Sci U S A. — 2006. — Oct. —Vol. 103, no. 44. — Pp. 16484–9.180. Moore S., Sauer R. The tmRNA system for translational surveillance and ribosome rescue. // Annu Rev Biochem. — 2007. — Apr. — Vol.
76. — Pp. 101–24.181. Bugaeva E. [et al.] Structural features of the tmRNA-ribosome interaction. //RNA. — 2009. — Dec. — Vol. 15, no. 12. — Pp. 2312–20.182. Berman H. M. [et al.] The Protein Data Bank // Nucleic Acids Res. — 2000. —Jan. — Vol. 28, no. 1. — Pp. 235–242.183. Murthy V. L., Rose G. D. RNABase: an annotated database of RNA structures //Nucleic Acids Res. — 2003.
— Jan. — Vol. 31, no. 1. — Pp. 502–504.184. Sharma S., Ding F., Dokholyan N. V. iFoldRNA: three-dimensional RNAstructure prediction and folding // Bioinformatics. — 2008. — Sept. — Vol.24, no. 17. — Pp. 1951–1952.185. Jonikas M. A. [et al.] Coarse-grained modeling of large RNA molecules withknowledge-based potentials and structural filters // RNA. — 2009. — Feb. —Vol. 15, no. 2.
— Pp. 189–199.186. Burks J. [et al.] Comparative 3-D modeling of tmRNA // BMC Mol. Biol. —2005. — Vol. 6. — P. 14.187. Massire C., Westhof E. MANIP: an interactive tool for modelling RNA // J.Mol. Graph. Model. — 1998. — Vol. 16, 4-6. — Pp. 197–205.286188. Tsai H. [et al.] Molecular modeling of the three-dimensional structure of thebacterial RNase P holoenzyme. // J Mol Biol.
— 2003. — Jan. — Vol. 325,no. 4. — Pp. 661–75.189. J. M. T., A. C. D. Modeling Unusual Nucleic Acid Structures // MolecularModeling of Nucleic Acids. — Chap. 25. Pp. 379–393. — eprint: http://pubs.acs.org/doi/pdf/10.1021/bk-1998-0682.ch024.190. Parisien M., Major F. The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data. // Nature.
— 2008. — Mar. — Vol. 452, no. 7183. —Pp. 51–5.191. Boyapati V. [et al.] Basis for ligand discrimination between ON and OFFstate riboswitch conformations: the case of the SAM-I riboswitch. // RNA. —2012. — June. — Vol. 18, no. 6. — Pp. 1230–43.192. Gillet R. [et al.] Scaffolding as an organizing principle in trans-translation. Theroles of small protein B and ribosomal protein S1 // J. Biol.
Chem. — 2007. —Mar. — Vol. 282, no. 9. — Pp. 6356–6363.193. Yusupova G. [et al.] Structural basis for messenger RNA movement on theribosome. // Nature. — 2006. — Nov. — Vol. 444, no. 7117. — Pp. 391–4.194. Harms J. [et al.] High resolution structure of the large ribosomal subunit froma mesophilic eubacterium. // Cell. — 2001. — Nov. — Vol. 107, no. 5. —Pp.
679–88.195. Shpanchenko O. [et al.] Stepping transfer messenger RNA through the ribosome. // J Biol Chem. — 2005. — May. — Vol. 280, no. 18. — Pp. 18368–74.287196. Bugaeva E. [et al.] One SmpB molecule accompanies tmRNA during its passage through the ribosomes. // FEBS Lett. — 2008. — Apr. — Vol. 582, no.10. — Pp. 1532–6.197. Hallier M. [et al.] Pre-binding of small protein B to a stalled ribosome triggerstrans-translation.
// J Biol Chem. — 2004. — June. — Vol. 279, no. 25. —Pp. 25978–85.198. Ramrath D. [et al.] The complex of tmRNA-SmpB and EF-G on translocatingribosomes. // Nature. — 2012. — May. — Vol. 485, no. 7399. — Pp. 526–9.199. Mankin A. Nascent peptide in the "birth canal" of the ribosome. // TrendsBiochem Sci.
— 2006. — Jan. — Vol. 31, no. 1. — Pp. 11–3.200. Bogdanov A. [et al.] Ribosomal tunnel and translation regulation. // Biochemistry (Mosc). — 2010. — Dec. — Vol. 75, no. 13. — Pp. 1501–16.201. Cruz-Vera L. [et al.] Nascent polypeptide sequences that influence ribosomefunction. // Curr Opin Microbiol. — 2011. — Apr. — Vol. 14, no. 2. —Pp. 160–6.202. Ōmura S. Macrolide Antibiotics: Chemistry, Biology, and Practice. — Academic Press, 2002.203. Wilson D. On the specificity of antibiotics targeting the large ribosomal subunit.
// Ann N Y Acad Sci. — 2011. — Dec. — Vol. 1241. — Pp. 1–16.204. Kannan K., Mankin A. Macrolide antibiotics in the ribosome exit tunnel:species-specific binding and action. // Ann N Y Acad Sci. — 2011. — Dec. —Vol. 1241. — Pp. 33–47.288205. Hansen J. [et al.] The structures of four macrolide antibiotics bound to thelarge ribosomal subunit.
// Mol Cell. — 2002. — July. — Vol. 10, no. 1. —Pp. 117–28.206. Kannan K., Vázquez-Laslop N., Mankin A. Selective protein synthesis by ribosomes with a drug-obstructed exit tunnel. // Cell. — 2012. — Oct. — Vol. 151,no. 3. — Pp. 508–20.207. Sumbatyan N., Korshunova G., Bogdanov A.
Peptide derivatives of antibiotics tylosin and desmycosin, protein synthesis inhibitors. // Biochemistry(Mosc). — 2003. — Oct. — Vol. 68, no. 10. — Pp. 1156–8.208. Korshunova G. [et al.] [Peptide derivatives of tylosin-related macrolides]. //Bioorg Khim. — 2007. — May. — Vol. 33, no. 2. — Pp. 235–44.209. Starosta A. [et al.] Interplay between the ribosomal tunnel, nascent chain, andmacrolides influences drug inhibition.
// Chem Biol. — 2010. — May. — Vol.17, no. 5. — Pp. 504–14.210. Trabuco L. [et al.] Recognition of the regulatory nascent chain TnaC by theribosome. // Structure. — 2010. — May. — Vol. 18, no. 5. — Pp. 627–37.211. Petrone P. [et al.] Side-chain recognition and gating in the ribosome exit tunnel. // Proc Natl Acad Sci U S A. — 2008. — Oct. — Vol. 105, no. 43. —Pp. 16549–54.212. Dunkle J. [et al.] Structures of the Escherichia coli ribosome with antibioticsbound near the peptidyl transferase center explain spectra of drug action. //Proc Natl Acad Sci U S A. — 2010. — Oct.
— Vol. 107, no. 40. — Pp. 17152–7.289213. Kowalak J., Bruenger E., McCloskey J. Posttranscriptional modification ofthe central loop of domain V in Escherichia coli 23 S ribosomal RNA. // JBiol Chem. — 1995. — July. — Vol. 270, no. 30. — Pp. 17758–64.214. Hornak V. [et al.] Comparison of multiple Amber force fields and developmentof improved protein backbone parameters. // Proteins. — 2006. — Nov.
—Vol. 65, no. 3. — Pp. 712–25.215. Petropoulos A. [et al.] Stepwise binding of tylosin and erythromycin to Escherichia coli ribosomes, characterized by kinetic and footprinting analysis. //J Biol Chem. — 2008. — Feb. — Vol. 283, no. 8. — Pp. 4756–65.216. Karahalios P. [et al.] On the mechanism of action of 9-O-arylalkyloximederivatives of 6-O-mycaminosyltylonolide, a new class of 16-memberedmacrolide antibiotics. // Mol Pharmacol. — 2006. — Oct.
— Vol. 70, no. 4. —Pp. 1271–80.217. Bulkley D. [et al.] Revisiting the structures of several antibiotics bound to thebacterial ribosome. // Proc Natl Acad Sci U S A. — 2010. — Oct. — Vol. 107,no. 40. — Pp. 17158–63.218. Llano-Sotelo B. [et al.] Binding and action of CEM-101, a new fluoroketolideantibiotic that inhibits protein synthesis. // Antimicrob Agents Chemother. —2010.
— Dec. — Vol. 54, no. 12. — Pp. 4961–70.219. Poehlsgaard J. [et al.] Visualizing the 16-membered ring macrolidestildipirosin and tilmicosin bound to their ribosomal site. // ACS Chem Biol. —2012. — Aug. — Vol. 7, no. 8. — Pp. 1351–5.220. GELLERT M., LIPSETT M. N., DAVIES D. R. Helix formation by guanylicacid // Proceedings of the National Academy of Sciences of the United Statesof America. — 1962. — Dec. — Vol.
48. — Pp. 2013–2018.290221. Arnott S., Chandrasekaran R., Marttila C. M. Structures for polyinosinic acidand polyguanylic acid // The Biochemical journal. — 1974. — Aug. — Vol.141, no. 2. — Pp. 537–543.222. Zimmerman S. B. X-ray study by fiber diffraction methods of a self-aggregateof guanosine-5'-phosphate with the same helical parameters as poly(rG) //Journal of molecular biology. — 1976. — Sept.