Конформационная динамика нуклеиновых кислот при взаимодействии с лигандами (1098269), страница 41
Текст из файла (страница 41)
— Pp. 470–3.74. Micklefield J. Backbone modification of nucleic acids: synthesis, structure andtherapeutic applications. // Curr Med Chem. — 2001. — Aug. — Vol. 8, no.10. — Pp. 1157–79.75. Joyce G. Evolution. Toward an alternative biology.
// Science. — 2012. —Apr. — Vol. 336, no. 6079. — Pp. 307–8.76. Pinheiro V. [et al.] Synthetic genetic polymers capable of heredity and evolution. // Science. — 2012. — Apr. — Vol. 336, no. 6079. — Pp. 341–4.27277. Schoning K. [et al.] Chemical etiology of nucleic acid structure: the alphathreofuranosyl-(3'–>2') oligonucleotide system. // Science.
— 2000. —Nov. — Vol. 290, no. 5495. — Pp. 1347–51.78. Zhang L., Peritz A., Meggers E. A simple glycol nucleic acid. // J Am ChemSoc. — 2005. — Mar. — Vol. 127, no. 12. — Pp. 4174–5.79. Lescrinier E. [et al.] Solution structure of a HNA-RNA hybrid. // ChemBiol. — 2000. — Sept. — Vol. 7, no. 9. — Pp.
719–31.80. Allart B. [et al.] D-Altritol Nucleic Acids (ANA): Hybridisation Properties,Stability, and Initial Structural Analysis // Chemistry – A European Journal. —1999. — Vol. 5, no. 8. — Pp. 2424–2431.81. Nielsen P. [et al.] Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. // Science. — 1991. — Dec.
—Vol. 254, no. 5037. — Pp. 1497–500.82. Betts L. [et al.] A nucleic acid triple helix formed by a peptide nucleic acidDNA complex. // Science. — 1995. — Dec. — Vol. 270, no. 5243. —Pp. 1838–41.83. Ovaere M. [et al.] How does hydroxyl introduction influence the double helicalstructure: the stabilization of an altritol nucleic acid:ribonucleic acid duplex. //Nucleic Acids Res. — 2012. — Aug. — Vol. 40, no. 15. — Pp. 7573–83.84. Topham C., Smith J.
Orientation preferences of backbone secondary amidefunctional groups in peptide nucleic acid complexes: quantum chemical calculations reveal an intrinsic preference of cationic D-amino acid-based chiralPNA analogues for the P-form. // Biophys J. — 2007. — Feb. — Vol. 92, no.3. — Pp. 769–86.27385. Soliva R. [et al.] Molecular Dynamics Simulations of PNADNA andPNARNA Duplexes in Aqueous Solution // Journal of the American Chemical Society. — 2000. — Vol.
122, no. 25. — Pp. 5997–6008. — eprint: http://pubs.acs.org/doi/pdf/10.1021/ja000259h.86. Sen S., Nilsson L. Molecular Dynamics of Duplex Systems Involving PNA:Structural and Dynamical Consequences of the Nucleic Acid Backbone // Journal of the American Chemical Society.
— 1998. — Vol. 120, no. 4. — Pp. 619–631. — eprint: http://pubs.acs.org/doi/pdf/10.1021/ja972234x.87. Shields G. C., Laughton C. A., Orozco M. Molecular Dynamics Simulation ofa PNADNAPNA Triple Helix in Aqueous Solution // Journal of the AmericanChemical Society. — 1998. — Vol. 120, no. 24. — Pp. 5895–5904. — eprint:http://pubs.acs.org/doi/pdf/10.1021/ja9723444.88. Denning E.
[et al.] Impact of 2'-hydroxyl sampling on the conformationalproperties of RNA: update of the CHARMM all-atom additive force field forRNA. // J Comput Chem. — 2011. — July. — Vol. 32, no. 9. — Pp. 1929–43.89. Case D. [et al.] The Amber biomolecular simulation programs. // J ComputChem. — 2005. — Dec.
— Vol. 26, no. 16. — Pp. 1668–88.90. Cornell W. D. [et al.] A Second Generation Force Field for the Simulation ofProteins, Nucleic Acids, and Organic Molecules // Journal of the AmericanChemical Society. — 1995. — Vol. 117, no. 19. — Pp. 5179–5197. — eprint:http://pubs.acs.org/doi/pdf/10.1021/ja00124a002.91. Beššeoví I. [et al.] Simulations of A-RNA duplexes.
The effect of sequence,solute force field, water model, and salt concentration. // J Phys Chem B. —2012. — Aug. — Vol. 116, no. 33. — Pp. 9899–916.27492. Ode H. [et al.] Force field parameters for rotation around chi torsion axis innucleic acids. // J Comput Chem. — 2008. — Nov. — Vol. 29, no. 15. —Pp. 2531–42.93. Yildirim I. [et al.] Reparameterization of RNA chi Torsion Parameters forthe AMBER Force Field and Comparison to NMR Spectra for Cytidine andUridine. // J Chem Theory Comput. — 2010.
— May. — Vol. 6, no. 5. —Pp. 1520–1531.94. Yildirim I. [et al.] Revision of AMBER Torsional Parameters for RNA Improves Free Energy Predictions for Tetramer Duplexes with GC and iGiC BasePairs. // J Chem Theory Comput. — 2012. — Jan. — Vol. 8, no. 1. — Pp. 172–181.95. Ditzler M. [et al.] Molecular dynamics and quantum mechanics of RNA: conformational and chemical change we can believe in. // Acc Chem Res.
—2010. — Jan. — Vol. 43, no. 1. — Pp. 40–7.96. Baníš P. [et al.] Can We Accurately Describe the Structure of Adenine Tractsin B-DNA? Reference Quantum-Chemical Computations Reveal Overstabilization of Stacking by Molecular Mechanics // Journal of Chemical Theoryand Computation. — 2012. — Vol. 8, no. 7. — Pp. 2448–2460. — eprint:http://pubs.acs.org/doi/pdf/10.1021/ct3001238.97. Miller M. [et al.] Hydration is a major determinant of the G-quadruplexstability and conformation of the human telomere 3' sequence ofd(AG3(TTAG3)3).
// J Am Chem Soc. — 2010. — Dec. — Vol. 132,no. 48. — Pp. 17105–7.27598. Zheng K. [et al.] Molecular crowding creates an essential environment for theformation of stable G-quadruplexes in long double-stranded DNA. // NucleicAcids Res. — 2010. — Jan.
— Vol. 38, no. 1. — Pp. 327–38.99. Fujimoto T. [et al.] The effects of molecular crowding on the structure andstability of g-quadruplexes with an abasic site. // J Nucleic Acids. — 2011. —June. — Vol. 2011. — P. 857149.100. Webba da Silva M. Geometric formalism for DNA quadruplex folding. //Chemistry. — 2007. — June.
— Vol. 13, no. 35. — Pp. 9738–45.101. Crnugelj M., Sket P., Plavec J. Small change in a G-rich sequence, a dramaticchange in topology: new dimeric G-quadruplex folding motif with unique looporientations. // J Am Chem Soc. — 2003. — July. — Vol. 125, no. 26. —Pp. 7866–71.102. Strahan G., Keniry M., Shafer R. NMR structure refinement and dynamics ofthe K+-[d(G3T4G3)]2 quadruplex via particle mesh Ewald molecular dynamics simulations. // Biophys J.
— 1998. — Aug. — Vol. 75, no. 2. — Pp. 968–81.103. Smith F., Feigon J. Quadruplex structure of Oxytricha telomeric DNA oligonucleotides. // Nature. — 1992. — Mar. — Vol. 356, no. 6365. — Pp. 164–8.104. Haider S., Parkinson G., Neidle S. Crystal structure of the potassium form ofan Oxytricha nova G-quadruplex. // J Mol Biol. — 2002.
— July. — Vol. 320,no. 2. — Pp. 189–200.105. Stefl R. [et al.] Molecular dynamics of DNA quadruplex molecules containinginosine, 6-thioguanine and 6-thiopurine. // Biophys J. — 2001. — Jan. — Vol.80, no. 1. — Pp. 455–68.276106. Spacková N. [et al.] Theoretical study of the guanine –> 6-thioguanine substitution in duplexes, triplexes, and tetraplexes. // J Am Chem Soc. — 2004.
—Nov. — Vol. 126, no. 44. — Pp. 14642–50.107. Lee M. [et al.] Large-scale conformational dynamics of the HIV-1 integrasecore domain and its catalytic loop mutants. // Biophys J. — 2005. — May. —Vol. 88, no. 5. — Pp. 3133–46.108. Koller A. [et al.] Aromatic N versus aromatic F: bioisosterism discoveredin RNA base pairing interactions leads to a novel class of universal baseanalogs. // Nucleic Acids Res.
— 2010. — May. — Vol. 38, no. 9. — Pp. 3133–46.109. Pronk S. [et al.] Copernicus: A new paradigm for parallel adaptive moleculardynamics // High Performance Computing, Networking, Storage and Analysis(SC), 2011 International Conference for. — Nov. 2011. — Pp. 1–10.110. Lindorff-Larsen K. [et al.] How fast-folding proteins fold. // Science. —2011. — Oct. — Vol. 334, no.
6055. — Pp. 517–20.111. Hünenberger P., McCammon J. Effect of artificial periodicity in simulationsof biomolecules under Ewald boundary conditions: a continuum electrostaticsstudy. // Biophys Chem. — 1999. — Apr. — Vol. 78, 1-2. — Pp. 69–88.112. Klein D. [et al.] The kink-turn: a new RNA secondary structure motif. // EMBOJ. — 2001.
— Aug. — Vol. 20, no. 15. — Pp. 4214–21.113. Rázga F. [et al.] Hinge-like motions in RNA kink-turns: the role of the seconda-minor motif and nominally unpaired bases. // Biophys J. — 2005. — May. —Vol. 88, no. 5. — Pp. 3466–85.277114. Schroeder K. [et al.] A structural database for k-turn motifs in RNA. //RNA. — 2010. — Aug. — Vol. 16, no. 8. — Pp. 1463–8.115. Shankar N. [et al.] The NMR structure of an internal loop from 23S ribosomal RNA differs from its structure in crystals of 50s ribosomal subunits. //Biochemistry. — 2006. — Oct. — Vol. 45, no. 39. — Pp.
11776–89.116. Reblove K. [et al.] An RNA molecular switch: Intrinsic flexibility of 23S rRNAHelices 40 and 68 5'-UAA/5'-GAN internal loops studied by molecular dynamics methods. // J Chem Theory Comput. — 2010. — Jan. — Vol. 2010,no. 6. — Pp.